RAID

Материал из ПИЭ.Wiki

Перейти к: навигация, поиск
RAID
RAID (англ. redundant array of independent disks — избыточный массив независимых жёстких дисков) — массив из нескольких дисков, управляемых контроллером, взаимосвязанных скоростными каналами и воспринимаемых внешней системой как единое целое. В зависимости от типа используемого массива может обеспечивать различные степени отказоустойчивости и быстродействия. Служит для повышения надёжности хранения данных и/или для повышения скорости чтения/записи информации (RAID 0).


Содержание

История

Аббревиатура RAID изначально расшифровывалась как «redundant array of inexpensive disks» («избыточный (резервный) массив недорогих дисков», так как они были гораздо дешевле RAM). Именно так был представлен RAID его создателями Петтерсоном (David A. Patterson), Гибсоном (Garth A. Gibson) и Катцом (Randy H. Katz). Со временем RAID стали расшифровывать как «redundant array of independent disks» («избыточный (резервный) массив независимых дисков»), потому как для массивов приходилось использовать и дорогое оборудование (под недорогими дисками подразумевались диски для ПЭВМ).

RAID массивы впервые упоминаются в 1987 г. в статье исследователей Калифорнийского университета Беркли "A Case for Redundant Arrays of Inexpensive Discs (RAID)". В статье описывалось, каким образом можно несколько дешевых жестких дисков объединить в одно логическое устройство таким образом, что в результате объединения повышаются емкость и быстродействие системы, а отказ отдельных дисков не приводит к отказу всей системы. Возможность недорого (inexpensive) построить дисковый массив большой емкости, повышенного быстродействия и, к тому же, отказоустойчивый, с этого времени постоянно беспокоит умы компьютерщиков. Однако широкое распространение такие системы получили только сейчас. Это связано с тем, что с недороговизной (inexpensiveness) получилась маленькая неувязочка. Всем ведь известно, что не всякие комплектующие подходят, чтобы вышла «конфетка». В самые первые RAID-ы, чтобы они действительно работали, пришлось устанавливать очень дорогие дисковые устройства от мэйнфреймов. Поэтому и аббревиатуру RAID стали расшифровывать как "Redundant Arrays of Independent Discs" – избыточный массив независимых дисков. Сейчас достаточно хорошие диски имеют разумную стоимость, и RAID становится основным элементом современного сервера любого уровня (а часто и не только сервера).

Первоначальное предназначение RAID – создание на базе нескольких винчестеров диска большого объема с увеличенной скоростью доступа. Но затем к двум основным целям добавилась третья – сохранение данных в случае отказа части оборудования. Именно эти три кита сделали RAID-массивы столь востребованными бизнесом и военными. Впрочем, за объем, скорость и надежность пришлось платить повышением стоимости и сложности систем хранения данных. Со временем оборудование для построения RAID массивов стало более доступным, особенно с появлением дешевых решений для IDE/ATA и SATA дисков. Теперь уже не только специалисты по СХД, но и обычные пользователи столкнулись с хитростями построения дисковых массивов.


Общие принципы функционирования

Массив с параллельным доступом
Массив с независимым доступом

Основные задачи, которые позволяют решить RAID, это обеспечение отказоустойчивости дисковой системы и повышение ее производительности.

Отказоустойчивость достигается тем, что вводится избыточность. В RAID объединяется больше дисков, чем это необходимо для получения требуемой емкости.

Производительность дисковой системы повышается за счет того, что современные интерфейсы (в частности, SCSI) позволяют осуществлять операции записи и считывания фактически одновременно с несколькими дисками. Поэтому в первом приближении можно рассчитывать, что скорость записи или чтения, в случае применения RAID, увеличивается пропорционально количеству дисков, объединяемых в RAID. Возможность одновременной работы с несколькими дисками можно реализовать двумя способами: с использованием параллельного доступа (parallel-access array) и с использованием независимого доступа (independent-access array).

Для организации параллельного доступа рабочее пространство дисков размечается на зоны определенного размера (блоки) для размещения данных и избыточной информации. Информация, подлежащая записи на диски (запрос на обслуживание), разбивается на такие же по величине блоки, и каждый блок записывается на отдельный диск. При поступлении запроса на чтение, необходимая информация собирается из нескольких блоков.


Понятно, что в этом случае скорость записи (равно как и скорость чтения) увеличивается пропорционально количеству дисков, объединенных в RAID.

Для организации независимого доступа рабочее пространство дисков также размечается на зоны определенного размера (блоки). Однако, в отличие от предыдущего случая, каждый запрос на запись или чтение обслуживается только одним диском.


Естественно, в этом случае скорость записи будет не выше, чем при работе с одним диском. Однако массив с независимым доступом в каждый момент времени может обслуживать одновременно несколько запросов, каждый диск обслуживает свой запрос. Таким образом, оба архитектурных решения способствуют повышению производительности, но механизм повышения производительности у этих решений различен. Соответственно, свойства RAID существенно зависят от того, какой из этих двух механизмов в нем используется. Именно поэтому при сравнении RAID различного уровня в первую очередь необходимо сравнивать размер логических блоков. Точнее говоря, не собственно размер, а соотношение размера блока и величины запроса на обслуживание (объем информации, подлежащей записи или считыванию).

Другим фактором, влияющим на производительность, является способ размещения избыточной информации. Избыточная информация может храниться на специально выделенном для этого диске и может распределяться по всем дискам. И, наконец, в RAID различного уровня применяются различные способы вычисления избыточной информации. Это также влияет на характеристики RAID (надежность, в первую очередь, производительность и стоимость). Основные способы: полное дублирование информации, применение кодов с коррекцией ошибок (применяется код с коррекцией одиночных ошибок и обнаружением двойных ошибок ECC – код Хемминга) и вычисление четности (Parity).

Зеркалирование
Дуплекс
Чередование

В основе теории RAID лежат пять основных принципов: Массив (Array), Зеркалирование (Mirroring), Дуплекс (Duplexing), Чередование (Striping) и Четность (Parity).

Массивом называют несколько накопителей, которые централизованно настраиваются, форматируются и управляются. Логический массив – это уже более высокий уровень представления, на котором не учитываются физические характеристики системы. Соответственно, логические диски могут по количеству и объему не совпадать с физическими. Но лучше все-таки соблюдать соответствие: физический диск – логический диск. Наконец, для операционной системы вообще весь массив является одним большим диском.

Зеркалирование – технология, позволяющая повысить надежность системы. В RAID массиве с зеркалированием все данные одновременно пишутся не на один, а на два жестких диска. То есть создается «зеркало» данных. При выходе из строя одного из дисков вся информация остается сохраненной на втором. За такую стопроцентную защиту приходится дорого платить: считайте, что один винчестер у вас работает просто так, не увеличивая доступную емкость ни на Мегабайт. При этом нет никакого выигрыша в производительности.

Дуплекс – развитие идеи зеркалирования. В этом случае так же высок уровень надежности и требуется в два раза больше жестких дисков. Но появляются дополнительные затраты: для повышения надежности в систему устанавливаются два независимых RAID контроллера. Выход из строя одного диска или контроллера не сказывается на работоспособности системы. Столь дорогое решение используется только во внешних RAID-массивах, предназначенных для ответственных приложений.

Чередование – отличная возможность повысить быстродействие системы. Очевидно, если чтение и запись вести параллельно на нескольких жестких дисках, можно получить выигрыш в скорости. Как это делается? Записываемый файл разбивается на части определенного размера и посылается одновременно на все имеющиеся накопители. В таком фрагментированном виде файл и хранится. Считывается он тоже «по кусочкам». Размер «кусочка» может быть минимальным – 1 байт, но чаще используют более крупное дробление – по 512 байт (размер сектора).

Четность является альтернативным решением, соединяющим в себе достоинства зеркалирования (высокая надежность) и чередования (высокая скорость работы). Используется тот же принцип, что и в контроле четности оперативной памяти.

Если имеется I блоков данных и на их основе вычисляется еще один дополнительный экстраблок, из получившихся (I+1) блоков всегда можно восстановить информацию даже при повреждении одного из них. Соответственно, для создания нормального RAID-массива в этом случае требуется (I+1) жесткий диск.

Распределение блоков по дискам точно такое же, как при чередовании. Экстраблок может записываться на отдельный накопитель, либо раскидываться по дискам.

Что же хранится в экстраблоке? Обычно каждый бит экстраблока состоит из суммы бит всех I блоков, точнее из результата выполнения логической операции XOR. Многие помнят со школы, что XOR – удивительный оператор, при его повторном наложении мы можем получить первоначальный результат. То есть (A XOR B) XOR B = A. Это правило распространяется на любое количество операндов.

Плюсы четности очевидны. За счет использования чередования повышается скорость работы. При зеркалировании надежность сохраняется, но при этом «нерабочий» объем массива заметно уменьшается, он одинаков при любом количестве дисков и составляет емкость одного диска, то есть при 5 дисках в массиве пропадает всего 20% емкости.

Но у четности есть весомый минус. Для формирования экстраблоков требуются вычисления! Их надо делать на лету, причем с миллионами, миллиардами бит! Если это дело поручить центральному процессору, мы получим очень «тормознутую» систему. Необходимо использовать довольно дорогие платы с RAID-контроллерами, которые «берут все вычисления на себя». В случае выхода из строя одного из дисков, процесс восстановления будет не столь быстрым, как при зеркалировании.

Уровни RAID

Для стандартизации продуктов RAID в 1992 году был организован промышленный консорциум – Комиссия советников по RAID

Калифорнийский университет в Беркли представил следующие уровни спецификации RAID, которые были приняты как стандарт де-факто:

- RAID 0 представлен как дисковый массив повышенной производительности и меньшей отказоустойчивости.

- RAID 1 определён как зеркальный дисковый массив.

- RAID 2 зарезервирован для массивов, которые применяют код Хемминга.

- RAID 3 и 4 используют массив дисков с чередованием и выделенным диском четности.

- RAID 5 используют массив дисков с чередованием и "невыделенным диском четности".

- RAID 6 используют массив дисков с чередованием и двумя независимыми "четностями" блоков.

- RAID 10 — RAID 0, построенный из RAID 1 массивов

- RAID 50 — RAID 0, построенный из RAID 5

- RAID 60 - RAID 0, построенный из RAID 6

В настоящее время комиссией стандартизировано 8 вариантов (уровней) объединения дисков в массивы: от RAID-0 до RAID-7. Номера уровней определены просто в порядке, в котором были предложены различные варианты и не связаны с характеристиками RAID. Применяются также комбинированные уровни, например, уровень 0+1 означает RAID уровня 0, но в этот RAID объединены не одиночные диски, а несколько RAID уровня 1 (несколько зеркальных дисков).


RAID 0
RAID 0
RAID 0 — дисковый массив без отказоустойчивости (Striped Disk Array without Fault Tolerance), дисковый массив из двух или более жёстких дисков с отсутствием резервирования. Информация разбивается на блоки данных (Ai) и записывается на оба/несколько дисков одновременно. За счёт этого существенно повышается производительность (от количества дисков зависит кратность увеличения производительности). Но страдает надёжность всего массива (при выходе из строя любого из входящих в RAID 0 винчестеров вся содержащаяся на них информация становится недоступной). Надёжность массива RAID 0 заведомо ниже надёжности любого из дисков в отдельности. Вероятность отказа такой системы из двух дисков примерно равна удвоенной вероятности отказа одного из дисков, т. к. отказ любого из дисков приводит к неработоспособности всего массива, и растет с увеличением количества входящих в RAID 0 дисков.

За счет возможности одновременного ввода/вывода с нескольких дисков массива RAID 0 обеспечивает максимальную скорость передачи данных и максимальную эффективность использования дискового пространства, так как не требуется места для хранения контрольных сумм. Реализация этого уровня очень проста. RAID 0, как правило, применяется в тех областях, где требуется быстрая передача большого объема данных. Для реализации массива требуется не меньше двух винчестеров. RAID-0, строго говоря, вообще не является избыточным массивом (RAID); тем не менее, данный термин широко применяется и поэтому разрешен RAB.


Преимущества:

- наивысшая производительность в приложениях, требующих интенсивной обработки запросов ввода/вывода и данных большого объема;

- простота реализации;

- низкая стоимость;

- максимальная эффективность использования дискового пространства — 100%.


Недостатки:

- не является "настоящим" RAID'ом, поскольку не поддерживает отказоустойчивость;

- отказ одного диска влечет за собой потерю всех данных массива.



RAID 1
RAID 1
RAID 1 - дисковый массив с зеркалированием (Mirroring & Duplexing), предназначен в основном для обеспечения отказоустойчивости системы. За счет полного дублирования информации обеспечивается очень высокий уровень надежности — работает до тех пор, пока функционирует хотя бы один диск в массиве. Вероятность выхода из строя сразу двух дисков равна произведению вероятностей отказа каждого диска. На практике при выходе из строя одного из дисков следует срочно принимать меры — вновь восстанавливать избыточность. Для этого с любым уровнем RAID (кроме нулевого) рекомендуют использовать диски горячего резерва. Достоинство такого подхода — поддержание постоянной надёжности. Однако и стоимость хранения информации получается немалой - приходится выплачивать стоимость двух жёстких дисков, получая полезный объем одного жёсткого диска (классический случай, когда массив состоит из двух дисков). Обеспечивает приемлемую скорость записи и выигрыш по скорости чтения при распараллеливании запросов.


Зеркало на многих дисках — RAID 1+0 или RAID 0+1. Под RAID 1+0 имеют в виду вариант RAID 10, когда два RAID 1 объединяются в RAID 0. Вариант, когда два RAID 0 объединяются в RAID 1 называется RAID 0+1, и "снаружи" представляет собой тот же RAID 10. Достоинства и недостатки такие же, как и у уровня RAID 0. Как и в других случаях, рекомендуется включать в массив диски горячего резерва из расчёта один резервный на пять рабочих.


Преимущества:

- простота реализации;

- простота восстановления массива в случае отказа (копирование).


Недостатки:

- высокая стоимость — 100-процентная избыточность;

- невысокая скорость передачи данных.



RAID 2
RAID 2 - отказоустойчивый дисковый массив с использованием кода Хемминга (Hamming Code ECC), характеризуется очень высокой надежностью. Схема резервирования данных с использованием кода Хэмминга (Hamming code) для коррекции ошибок. Поток данных разбивается на слова — причем размер слова соответствует количеству дисков для записи данных. Для каждого слова вычисляется код коррекции ошибок, который записывается на диски, выделенные для хранения контрольной информации. Их число равно количеству бит в слове контрольной суммы. Такой же метод, кстати, применяется и для коррекции ошибок в оперативной памяти серверов. В RAID уровня 2 расслоение данных для записи или чтения осуществляется на уровне битов. Однако, вследствие применения кода с коррекцией ошибок, RAID уровня 2 требует для хранения контрольной информации более одного диска. Если слово состоит из четырех бит, то под контрольную информацию отводится три диска (в массивах такого типа диски делятся на две группы — для данных и для кодов коррекции ошибок, причем если данные хранятся на n дисках, то для хранения кодов коррекции необходимо n − 1 дисков). Большинство контрольных дисков, используемых в RAID уровня 2, нужны для определения положения неисправного разряда. Но в этом сейчас уже нет нужды, так как большинство контроллеров в состоянии самостоятельно определить, когда диск отказал при помощи специальных сигналов, или дополнительного кодирования информации, записанной на диск и используемой для исправления случайных сбоев. RAID 2 — один из немногих уровней, позволяющих обнаруживать двойные ошибки и исправлять "на лету" одиночные. При этом он является самым избыточным среди всех уровней с контролем четности. Эта схема хранения данных не получила коммерческого применения, поскольку плохо справляется с большим количеством запросов.

Преимущества:

- достаточно простая реализация;

- коррекция ошибок "на лету";

- очень высокая скорость передачи данных;

- при увеличении количества дисков накладные расходы уменьшаются.

Недостатки:

- низкая скорость обработки запросов;

- высокая стоимость;

- большая избыточность.



В RAID уровней 3, 4 и 5 применяется простое вычисление четности путем применения к записываемым блокам операции «исключающее или» – XOR (Parity), что позволяет использовать меньшее количество избыточных дисков.


RAID 3
RAID 3
RAID 3 - отказоустойчивый дисковый массив с параллельной передачей данных и четностью (Parallel Transfer Disks with Parity), для обеспечения отказоустойчивости вводится один дополнительный диск, на который записывается дополнительная (контрольная) информация. Отказоустойчивый массив с параллельным вводом/выводом данных и диском контроля четности. Поток данных разбивается на порции на уровне байт (хотя возможно и на уровне бит) и записывается одновременно на все диски массива, кроме одного. Один диск предназначен для хранения контрольных сумм, вычисляемых при записи данных. Поломка любого из дисков массива не приведет к потере информации. При выходе из строя любого диска данные на нем можно восстановить по контрольным данным и данным, оставшимся на исправных дисках (как и в RAID уровня 2 расслоение данных для записи или чтения осуществляется на уровне битов). Таким образом, в RAID уровня 3 реализуется практически в чистом виде архитектура с параллельным доступом. Этот уровень имеет намного меньшую избыточность, чем RAID 2. Во втором рэйде большинство дисков, хранящих контрольную информацию, нужны для определения неисправного разряда. Как правило, RAID-контроллеры могут получить данные об ошибке с помощью механизмов отслеживания случайных сбоев. За счет разбиения данных на порции RAID 3 имеет высокую производительность. Поскольку при каждой операции ввода/вывода производится обращение практически ко всем дискам массива, то одновременная обработка нескольких запросов невозможна.

Этот уровень подходит для приложений с файлами большого объема и малой частотой обращений (в основном это сфера мультимедиа). Использование только одного диска для хранения контрольной информации объясняет тот факт, что коэффициент использования дискового пространства достаточно высок (как следствие этого — относительно низкая стоимость). Для реализации массива требуется не меньше трех винчестеров.


Преимущества:

- отказ диска мало влияет на скорость работы массива;

- минимальное количество дисков для создания массива равно трем;

- высокая скорость передачи данных;

- высокий коэффициент использования дискового пространства.


Недостатки:

- сложность реализации;

- низкая производительность при большой интенсивности запросов данных небольшого объема. Массив этого типа хорош только для однозадачной работы с большими файлами, так как время доступа к отдельному сектору, разбитому по дискам, равно максимальному из интервалов доступа к секторам каждого из дисков. Для блоков малого размера время доступа намного больше времени чтения;

- большая нагрузка на контрольный диск, и, как следствие, его надёжность сильно падает по сравнению с дисками, хранящими данные.


Отличия RAID 3 от RAID 2: невозможность коррекции ошибок на лету и меньшая избыточность. В массиве RAID 3 из n дисков данные разбиваются на блоки размером 1 байт и распределяются по n − 1 дискам. Ещё один диск используется для хранения блоков чётности. В RAID 2 для этой цели применялся n − 1 диск, но большая часть информации на контрольных дисках использовалась для коррекции ошибок на лету, в то время как большинство пользователей удовлетворяет простое восстановление информации в случае поломки диска, для чего хватает информации, умещающейся на одном выделенном жёстком диске.


RAID 4
RAID 4
RAID 4 - отказоустойчивый массив независимых дисков с общим диском четности (Independent Data Disks with Shared Parity Disk). Этот массив очень похож на уровень RAID 3. Поток данных разделяется не на уровне байтов, а на уровне блоков информации, каждый из которых записывается на отдельный диск. После записи группы блоков вычисляется контрольная сумма, которая записывается на выделенный для этого диск. Отличается от RAID уровня 3 в первую очередь значительно большим размером блока записываемых данных (большим, чем размер записываемых данных). Типичное значение – кратно размеру сектора жесткого диска. Это и есть главное отличие между RAID 3 и 4.

У RAID 4 возможно одновременное выполнение нескольких операций чтения. Этот массив повышает производительность передачи файлов малого объема (за счет распараллеливания операции считывания). Но поскольку при записи должна изменяться контрольная сумма на выделенном диске, одновременное выполнение операций невозможно (налицо асимметричность операций ввода и вывода). Этот уровень имеет почти все недостатки RAID 3 и не обеспечивает преимущества в скорости при передаче данных большого объема. Схема хранения разрабатывалась для приложений, в которых данные изначально разбиты на небольшие блоки, поэтому нет необходимости разбивать их дополнительно. Эта схема хранения данных имеет невысокую стоимость, но ее реализация достаточно сложна, как и восстановление данных при сбое.


Преимущества:

- высокая скорость передачи данных;

- отказ диска мало влияет на скорость работы массива;

- высокий коэффициент использования дискового пространства.


Недостатки:

- достаточно сложная реализация;

- очень низкая производительность при записи данных;

- сложное восстановление данных.


RAID 4 похож на RAID 3, но отличается от него тем, что данные разбиваются на блоки, а не на байты. Таким образом, удалось отчасти «победить» проблему низкой скорости передачи данных небольшого объема. Запись же производится медленно из-за того, что четность для блока генерируется при записи и записывается на единственный диск. Из систем хранения широкого распространения RAID-4 применяется на устройствах хранения компании NetApp (NetApp FAS), где его недостатки успешно устранены за счет работы дисков в специальном режиме групповой записи, определяемом используемой на устройствах внутренней файловой системой WAFL.


RAID 5
RAID 5
RAID 5 - отказоустойчивый массив независимых дисков с распределенной четностью (Independent Data Disks with Distributed Parity Blocks), так же, как и RAID уровня 4, отличается от RAID уровня 3 большим размером блока записываемых данных. Кроме того, в отличие от RAID уровня 4, для хранения избыточной информации не выделяется отдельный диск, а контрольная информация записывается на различные диски по очереди. Такое размещение избыточной информации позволяет повысить производительность дискового массива. Однако, главное отличие RAID уровней 3 и 5 состоит, вопреки распространенному мнению, не в методе хранения избыточной информации, а в размере логических блоков, записываемых на каждый диск. В отличие от RAID уровня 3, в RAID уровня 5 реализуется архитектура с независимым доступом.

RAID 5 - самый распространенный уровень. Блоки данных и контрольные суммы циклически записываются на все диски массива, отсутствует выделенный диск для хранения информации о четности, нет асимметричности конфигурации дисков.

В случае RAID 5 все диски массива имеют одинаковый размер — но один из них невидим для операционной системы. Например, если массив состоит из пяти дисков емкостью 10 Гб каждый, то фактически размер массива будет равен 40 Гб — 10 Гб отводится на контрольные суммы. В общем случае полезная емкость массива из N дисков равна суммарной емкости N–1 диска.

Основным недостатком уровней RAID от 2-го до 4-го является невозможность производить параллельные операции записи, так как для хранения информации о четности используется отдельный контрольный диск. RAID 5 не имеет этого недостатка. Блоки данных и контрольные суммы циклически записываются на все диски массива, нет асимметричности конфигурации дисков. Под контрольными суммами подразумевается результат операции XOR(исключающее или). Xor обладает особенностью, которая применяется в RAID 5, которая даёт возможность заменить любой операнд результатом, и применив алгоритм xor, получить в результате недостающий операнд. Например: a xor b = c (где a, b, c — три диска рейд-массива), в случае если a откажет, мы можем получить его, поставив на его место c и проведя xor между c и b: c xor b = a. Это применимо вне зависимости от количества операндов: a xor b xor c xor d = e. Если отказывает c тогда e встаёт на его место и проведя xor в результате получаем c: a xor b xor e xor d = c. Этот метод по сути обеспечивает отказоустойчивость 5 версии. Для хранения результата xor требуется всего 1 диск, размер которого равен размеру любого другого диска в raid.

RAID5 получил широкое распространение, в первую очередь, благодаря своей экономичности. Объем дискового массива RAID5 рассчитывается по формуле (n-1)*hddsize, где n — число дисков в массиве, а hddsize — размер наименьшего диска. Например, для массива из 4-х дисков по 80 гигабайт общий объем будет (4 — 1) * 80 = 240 гигабайт. На запись информации на том RAID 5 тратятся дополнительные ресурсы и падает производительность, так как требуются дополнительные вычисления и операции записи, зато при чтении (по сравнению с отдельным винчестером) имеется выигрыш, потому что потоки данных с нескольких дисков массива могут обрабатываться параллельно.

Но производительность RAID 5 заметно ниже, в особенности на операциях типа Random Write (записи в произвольном порядке), при которых производительность падает на 10-25% от производительности RAID 1 (или RAID 10), так как требует большего количества операций с дисками (каждая операция записи сервера заменяется на контроллере RAID на три - одну операцию чтения и две операции записи). Недостатки RAID 5 проявляются при выходе из строя одного из дисков — весь том переходит в критический режим (degrade), все операции записи и чтения сопровождаются дополнительными манипуляциями, резко падает производительность. При этом уровень надежности снижается до надежности RAID-0 с соответствующим количеством дисков (то есть в n раз ниже надежности одиночного диска). Если до полного восстановления массива произойдет выход из строя, или возникнет невосстановимая ошибка чтения хотя бы на еще одном диске, то массив разрушается, и данные на нем восстановлению обычными методами не подлежат. Следует также принять во внимание, что процесс RAID Reconstruction (восстановления данных RAID за счет избыточности) после выхода из строя диска вызывает интенсивную нагрузку чтения с дисков на протяжении многих часов непрерывно, что может спровоцировать выход какого-либо из оставшихся дисков из строя в этот наименее защищенный период работы RAID, а также выявить ранее необнаруженные сбои чтения в массивах cold data (данных, к которым не обращаются при обычной работе массива, архивные и малоактивные данные), что повышает риск сбоя при восстановлении данных. Минимальное количество используемых дисков равно трём.


Преимущества:

- высокая скорость записи данных;

- достаточно высокая скорость чтения данных;

- высокая производительность при большой интенсивности запросов чтения/записи данных;

- высокий коэффициент использования дискового пространства.


Недостатки:

- низкая скорость чтения/записи данных малого объема при единичных запросах;

- достаточно сложная реализация;

- сложное восстановление данных.


RAID 5EE поддерживается не во всех контроллерах RAID level-5EE подобен массиву RAID-5E, но с более эффективным использованием резервного диска и более коротким временем восстановления. Подобно RAID level-5E, этот уровень RAID-массива создает ряды данных и контрольных сумм во всех дисках массива. Массив RAID-5EE обладает улучшенной защитой и производительностью. При применении RAID level-5E, емкость логического тома ограничивается емкостью двух физических винчестеров массива (один для контроля, один резервный). Резервный диск является частью массива RAID level-5EE. Тем не менее, в отличие от RAID level-5E, использующего неразделенное свободное место для резерва, в RAID level-5EE в резервный диск вставлены блоки контрольных сумм, как показывается далее на примере. Это позволяет быстрее перестраивать данные при поломке физического диска. При такой конфигурации, вы не сможете использовать его с другими массивами. Если вам необходим запасной диск для другого массива, вам следует иметь еще один резервный винчестер. RAID level-5E требует как минимум четырех дисков и, в зависимости от уровня прошивки и их емкости, поддерживает от 8 до 16 дисков. RAID level-5E обладает определенной прошивкой. Примечание: для RAID level-5EЕ, вы можете использовать только один логический том в массиве.


Преимущества:

- 100% защита данных;

- большая емкость физических дисков по сравнению с RAID-1 или RAID-1E;

- большая производительность по сравнению с RAID-5;

- более быстрое восстановление RAID по сравнению с RAID-5Е.


Недостатки:

- более низкая производительность, чем в RAID-1 или RAID-1E;

- поддержка только одного логического тома на массив;

- невозможность совместного использования резервного диска с другими массивами;

- поддержка не всех контроллеров.


RAID 6
RAID 6
RAID 6 - отказоустойчивый массив независимых дисков с двумя независимыми распределенными схемами четности (Independent Data Disks with Two Independent Distributed Parity Schemes). Этот уровень во многом схож с RAID 5. Только в нем используется не одна, а две независимые схемы контроля четности, что позволяет сохранять работоспособность системы при одновременном выходе из строя двух накопителей. Для вычисления контрольных сумм в RAID 6 используется алгоритм, построенный на основе кода Рида-Соломона (Reed-Solomon). Требует более мощный RAID-контроллер. Обеспечивает работоспособность после одновременного выхода из строя двух дисков — защита от кратного отказа. Для организации массива требуется минимум 4 диска. Обычно использование RAID-6 вызывает примерно 10-15% падение производительности дисковой группы, по сравнению с аналогичными показателями RAID-5, что вызвано бόльшим объемом обработки для контроллера.

Этот уровень имеет очень высокую отказоустойчивость, большую скорость считывания (данные хранятся блоками, нет выделенных дисков для хранения контрольных сумм). В то же время из-за большого объема контрольной информации RAID 6 имеет низкую скорость записи (приходится рассчитывать в два раза больше контрольной информации, и соответственно записывать на диски тоже в два раза больше информации). Он очень сложен в реализации, характеризуется низким коэффициентом использования дискового пространства: для массива из пяти дисков он составляет всего 60%, но с ростом числа дисков ситуация исправляется.

RAID 6 по многим характеристикам проигрывает другим уровням, поэтому на сегодня не получил коммерческого применения.


Преимущества:

- высокая отказоустойчивость;

- достаточно высокая скорость обработки запросов;


Недостатки:

- низкая скорость чтения/записи данных малого объема при единичных запросах;

- очень сложная реализация;

- сложное восстановление данных;

- низкая скорость записи данных.


RAID 7
RAID 7 - отказоустойчивый массив, оптимизированный для повышения производительности (Optimized Asynchrony for High I/O Rates as well as High Data Transfer Rates). В отличие от других уровней, RAID 7 не является открытым индустриальным стандартом — это зарегистрированная торговая марка компании Storage Computer Corporation. Массив основывается на концепциях, использованных в третьем и четвертом уровнях. Добавилась возможность кэширования данных. В состав RAID 7 входит контроллер со встроенным микропроцессором под управлением операционной системы реального времени (real-time OS). Она позволяет обрабатывать все запросы на передачу данных асинхронно и независимо.

Блок вычисления контрольных сумм интегрирован с блоком буферизации; для хранения информации о четности используется отдельный диск, который может быть размещен на любом канале. RAID 7 имеет высокую скорость передачи данных и обработки запросов, хорошую масштабируемость. Самым большим недостатком этого уровня является стоимость его реализации.

Структура массива такова: на n − 1 дисках хранятся данные, один диск используется для складирования блоков чётности. Запись на диски кешируется с использованием оперативной памяти, сам массив требует обязательного ИБП; в случае перебоев с питанием происходит повреждение данных. В массивах этого уровня используется встроенная операционная система для кэширования данных и расчета контрольной информации. Причем эта самая информация передается по специальной Х-шине.


Преимущества:

- очень высокая скорость передачи данных и высокая скорость обработки запросов (в 1,5…6 раз выше других стандартных уровней RAID);

- хорошая масштабируемость;

- значительно возросшая (благодаря наличию кэша) скорость чтения данных небольшого объема;

- отсутствие необходимости в дополнительной передаче данных для вычисления четности.


Недостатки:

- собственность одной компании;

- сложность реализации;

- очень высокая стоимость на единицу объема;

- не может обслуживаться пользователем;

- необходимость использования блока бесперебойного питания для предотвращения потери данных из кэш-памяти;

- короткий гарантийный срок.


RAID 10
RAID 10— зеркалированный массив, который затем записывается последовательно на несколько дисков, как RAID 0. Эта архитектура представляет собой массив типа RAID 0, сегментами которого являются массивы RAID 1. Он объединяет в себе высокую отказоустойчивость и производительность. Нынешние контроллеры используют этот режим по умолчанию для RAID 1. То есть, 1 диск основной, 2-й диск — зеркало, причем чтение производится с них поочередно, как для RAID 0. Собственно, сейчас можно считать что RAID 10 и RAID 1+0 — это просто разное название одного и того же метода аппаратного зеркалирования дисков. Но не стоит забывать, что полноценный RAID 1+0 должен содержать как минимум 4 диска.

Очень дорогой способ хранить данные – ведь сначала создаются два массива RAID 0, и затем зеркалируются, что требует, как минимум, четыре диска в минимальной конфигурации. Причем цена такого массива начинает расти очень хорошим темпом, когда вы начинаете расширять его.


Комбинированные уровни

Существуют комбинированные уровни RAID 1+0, RAID 3+0, RAID 5+0, RAID 1+5, которые различные производители интерпретируют каждый по-своему.

- RAID 1+0 — это сочетание зеркалирования и чередования (см. выше).

- RAID 5+0 — это чередование томов 5-го уровня.

- RAID 1+5 — RAID 5 из зеркалированных пар.

Комбинированные уровни наследуют как преимущества, так и недостатки своих «родителей»: появление чередования в уровне RAID 5+0 нисколько не добавляет ему надёжности, но зато положительно отражается на производительности. Уровень RAID 1+5, наверное, очень надёжный, но не самый быстрый и, к тому же, крайне неэкономичный: полезная ёмкость тома меньше половины суммарной ёмкости дисков… Стоит отметить, что количество жестких дисков в комбинированных массивах также изменится. Например для RAID 5+0 используют 6 или 8 жестких дисков, для RAID 1+0 — 4, 6 или 8.


RAID 50 Под таким названием скрывается RAID массив, сочетающий в себе принципы массивов нулевого и пятого уровня. Основной целью его применения является повышение скорости работы дисковой подсистемы при сохранении высочайшей степени надежности хранения данных.


Уровни 6 и 7 по различным причинам применяются очень редко. Например, RAID 7® является зарегистрированной торговой маркой Storage Computer Corporation (SCC), поэтому применяется исключительно в изделиях этой фирмы. Более того, многие производители RAID-контроллеров уровнями 6 и 7 обозначают нестандартизированные или комбинированные уровни. Например, в контроллерах фирмы Mylex под RAID уровня 6 понимается комбинированный уровень 0+1, а под RAID уровня 7 – простое объединение нескольких дисков в один логический.

На практике производительность повышается за счет того, что, например, если контроллер получает команду записать 256 Кб данных, то эти данные по принципам RAID 0 разбиваются на два куска по 128 Кб, и затем каждый из них по принципам уже массивов пятого уровня разбивается на кусочки по 32 Кб, и записываются физически одновременно на все диски массива.

Затраты и целесообразность

В серверах начального уровня, когда на первый план выдвигается вопрос стоимости, целесообразно применять RAID уровня 1 (требуется только один дополнительный диск, зеркальный с основным). В серверах, для которых основным требованием является высокая производительность, лучшим решением будет RAID уровня 0+1. В большинстве же других случаев RAID уровня 5 обеспечивает достаточно высокую производительность при умеренных затратах. RAID уровня 3 целесообразно применять только в специальных серверах, предназначенных для хранения больших файлов (графика, видео и т.п.). Но и в этом случае RAID уровня 0+1 обеспечит лучшую производительность. В целом, качественное соотношение характеристик различного уровня может быть проиллюстрировано.

Качественное соотношение характеристик RAID различного уровня

Существует несколько компаний, которые производят RAID-системы в виде готового изделия. Это, например, Digital, Hitachi и др. Однако стоимость этих изделий не позволяет им оказать сколько-нибудь заметное влияние на российский рынок. В подавляющем большинстве случаев для организации RAID используется PCI-to-SCSI RAID-контроллер и несколько SCSI-дисков, которые устанавливаются в сервер отечественными производителями серверов, а иногда даже и самостоятельно.


Причины потери данных в RAID массивах

Повреждения массива - физические или логические ошибки на дисках, входящих в массив, вызванные, как правило, неисправностями жестких дисков. При этом контроллер массива работает корректно. RAID определяется системой как однин диск либо как неформатированный диск. Для массивов 1-го и 5-го уровня данная неисправность не является критической, и система выдает сообщения заменить неисправный диск и заново воссоздать массив.


Разрушение массива - контроллер утрачивает сведения о конфигурации массива. Признаки - жесткие диски определяются системой как отдельные диски, некоторые могут не отображаться вовсе. Диски определяются как неформатированные или с неизвестной файловой системой. Выход из строя RAID контроллера ведет к 100% разрушению массива. Восстановление raid массива в таком случае представляется возможным программными методами.

В RAID массиве два или более жёстких дисков работают параллельно. Данные разделяются для записи на каждый отдельный диск и сопровождаются дополнительным набором данных необходимым для восстановления всей информации при сбое одного из дисков. При выходе из строя одного из дисков, сбойный диск заменяется на новый. Данные восстанавливаются на новом диске, используя содержание других дисков массива. В зависимости от уровня производительности и надежности предоставляются различные способы объединения дисков и восстановления RAID массива.

Источник — «http://wiki.mvtom.ru/index.php/RAID»
Просмотры
Инструменты

Besucherzahler russian mail order brides
счетчик посещений
Rambler's Top100
Лингафонные кабинеты  Интерактивные доски  Интерактивная приставка Mimio Teach