PON

Материал из ПИЭ.Wiki

Перейти к: навигация, поиск

PON (Passive optical network) — технология пассивных оптических сетей. Распределительная сеть доступа PON основана на древовидной волоконно-кабельной архитектуре с пассивными оптическими разветвителями на узлах, представляет экономичный способ обеспечить широкополосную передачу информации. При этом архитектура PON обладает необходимой эффективностью наращивания узлов сети и пропускной способности, в зависимости от настоящих и будущих потребностей абонентов.


Содержание

История

Первые шаги в технологии PON (passive optical networks ) были предприняты 1995 году, когда влиятельная группа из семи компаний (British Telecom, France Telecom, Deutsche Telecom, NTT, KPN, Telefoniсa и Telecom Italia) создала консорциум для того, чтобы претворить в жизнь идеи множественного доступа по одному волокну. Эта неформальная организация, поддерживаемая ITU-T, получила название FSAN (full service access network). Много новых членов, как операторов, так и производителей оборудования вошло в нее в конце 90-х годов. Целью FSAN была разработка общих рекомендаций и требований к оборудованию PON для того, чтобы производители оборудования и операторы, могли сосуществовать вместе на конкурентном рынке систем доступа PON. На сегодня FSAN насчитывает 40 операторов и производителей и работает в тесном сотрудничестве с такими организациями по стандартизации, как ITU-T, ETSI и ATM форум.

В середине 90-х годов общепринятой была точка зрения, что только протокол ATM способен гарантировать приемлемое качество услуг связи QoS между конечными абонентами. Поэтому FSAN, желая обеспечить транспорт мультисервисных услуг через сеть PON, выбрал за основу технологию ATM. В результате, в октябре 1998 года появился первый стандарт ITU-T G.983.1, базирующийся на транспорте ячеек ATM в дереве PON и получивший название APON (ATM PON). Далее в течение нескольких лет появляется множество новых поправок и рекомендаций в серии G.983.x (x=1–7), скорость передачи увеличивается до 622 Мбит/c. В марте 2001 года появляется рекомендация G.983.3, закрепляющая понятие BPON (broadband PON) и добавляющая новые функции в стандарт PON:

передача разнообразных приложений (голоса, видео, данные) – это фактически позволило производителям добавлять соответствующие интерфейсы на OLT для подключения к магистральной сети и на ONT для подключения к абонентам; расширение спектрального диапазона – открывает возможность для дополнительных услуг на других длинах волн в условиях одного и того же дерева PON, например широковещательное телевидение на третьей длине волны (triple play) За расширенным таким образом стандартом APON закрепляется название BPON (broadband PON).

В ноябре 2000 года комитет LMSC (LAN/MAN standards committee) IEEE создает специальную комиссию под названием "Ethernet первую милю" EFM (Ethernet in the first mile) 802.3ah, реализовав тем самым пожелания многих экспертов построить архитектуру сети PON, наиболее приближенную к широко распространенным в настоящее время сетям Ethernet. Параллельно идет формирование альянса EFMA (Ethernet in the first mile alliance), который создается в декабре 2001 г. Фактически альянс EFMA и комиссия EFM дополняют друг друга и тесно работают над стандартом. Если EFM больше концентрируется на технических вопросах и разработке стандарта в рамках IEEE, то EFMA преимущественно изучает индустриальные и коммерческие аспекты использования новой технологии. Цель совместной работы – достижение консенсуса между операторами и производителями оборудования, и выработка стандарта IEEE 802.3ah, полностью совместимого с разрабатываемым стандартом магистрального пакетного кольца IEEE 802.17.

Принцип действия PON

Основные элементы архитектуры PON и принцип действия.
Основная идея архитектуры PON — использование всего одного приёмопередающего модуля в OLT (optical line terminal) для передачи информации множеству абонентских устройств ONT (optical network terminal в терминологии ITU-T), также называемых ONU (optical network unit в терминологии IEEE) и приёма информации от них.

Число абонентских узлов, подключенных к одному приёмопередающему модулю OLT, может быть настолько большим, насколько позволяет бюджет мощности и максимальная скорость приёмопередающей аппаратуры. Для передачи потока информации от OLT к ONT — прямого (нисходящего) потока, как правило, используется длина волны 1550 нм. Наоборот, потоки данных от разных абонентских узлов в центральный узел, совместно образующие обратный (восходящий) поток, передаются на длине волны 1310 нм. В OLT и ONT встроены мультиплексоры WDM, разделяющие исходящие и входящие потоки.


Прямой поток Прямой поток на уровне оптических сигналов, является широковещательным. Каждый абонентский узел ONT, читая адресные поля, выделяет из этого общего потока предназначенную только ему часть информации. Фактически, мы имеем дело с распределённым демультиплексором.

Обратный поток Все абонентские узлы ONT ведут передачу в обратном потоке на одной и той же длине волны, используя концепцию множественного доступа с временным разделением TDMA (time division multiple access). Чтобы исключить возможность пересечения сигналов от разных ONT, для каждого из них устанавливается свое индивидуальное расписание по передаче данных c учётом поправки на задержку, связанную с удалением данного ONT от OLT. Эту задачу решает протокол TDMA MAC.


Суть технологии PON заключается в том, что между центральным узлом, обеспечивающим подключение к магистрали (SDH/ATM), и абонентскими узлами создается полностью пассивная оптическая сеть древовидной топологии. В промежуточных узлах дерева размещаются компактные пассивные оптические разветвители (сплиттеры), не требующие питания и обслуживания.


Характеристики PON

Преимущества архитектуры PON:

• отсутствие промежуточных активных узлов

• экономия оптических приёмопередатчиков в центральном узле

• экономия волокон

• лёгкость подключения новых абонентов и удобство обслуживания (подключение, отключение или выход из строя одного или нескольких абонентских узлов никак не сказывается на работе остальных).

Древовидная топология P2MP позволяет оптимизировать размещение оптических разветвителей исходя из реального расположения абонентов, затрат на прокладку ОК и эксплуатацию кабельной сети.

К недостатку можно отнести возросшую сложность технологии PON и отсутствие резервирования в простейшей топологии дерева.

Слабой стороной систем доступа APON с топологией простого дерева является отсутствие резервирования. Самым неблагоприятным в этом случае мог бы быть сценарий с повреждение волокна, идущего от OLT к ближайшему разветвителю (фидерного волокна). Теряет связь весь сегмент, подключенный по этому волокну – десятки абонентских узлов, сотни абонентов остаются без сети. Среднее время ремонта MTTR (mean time to repair) может варьироваться в больших пределах от нескольких дней до нескольких недель в зависимости от оператора. В указанном случае однократного повреждения волокна наиболее отчетливо проявляется недостаток сети PON по сравнению с кольцевой топологией SDH. Поэтому в уже в первой рекомендации G.983.1 в приложении IV обсуждался вопрос о построении защищенных систем APON. В силу специфики топологии PON, эта задача не является столь простой как в кольцевых топологиях SDH, поскольку полоса обратного потока в PON является общей и формируется множеством абонентских узлов.


Основных варианта построения резервных систем PON

Частичное резервирование со стороны центрального узла.
а) Частичное резервирование со стороны центрального узла

Первое решение обеспечивает частичное резервирование со стороны центрального узла. Для реализации данного решения требуется разветвитель 2xN. Центральный узел оснащается двумя оптическими модулями LT-1 и LT-2, в которых происходит терминирование двух волокон. В нормальном режиме при отсутствии повреждений волокон основной канал является активным, и по нему организуется дуплексная передача. Резервный канал – не активный, – лазерный диод на LT-2 выключен. Фотоприемник на LT-2 при этом может прослушивать обратный поток. Если повреждается идущее от центрального узла волокно основного канала, то автоматически активизируется приемопередающая система LT-2, и на нее переключается модуль мультиплексирования, коммутации и кросс-коннекта на OLT, обеспечивая транспорт от интерфейсов магистрали. Для повышения надежности целесообразно брать фидерные волокна от разных, физически разнесенных оптических кабелей.


Частичное резервирование со стороны абонентского узла.
б) Частичное резервирование со стороны абонентского узла

Частичное резервирование со стороны абонентского узла позволяет повысить надежность работы абонентского узла. В этом случае требуется два оптических модуля LT-1 и LT-2 на абонентский узел. Переключение на резервный канал происходит аналогично предыдущему варианту. Не обязательно подключать все абонентские узлы по резервному каналу. Различие по стоимости абонентских узлов с резервированием (два модуля LT-1 и LT-2 ) и без него (один модуль LT) позволяет дифференцированно предлагать услуги различным категория абонентов.


Полное резервирование.
в) Полное резервирование

Система становится устойчивой как к выходу из строя приемо-передающего оборудования OLT и ONT, так и к повреждению любого участка волоконно-оптической кабельной системы. Информационные потоки на ONT генерируются одновременно обоими узлами LT-1 и LT-2 и передаются в два параллельных канала. На OLT только одна версия двух копий сигналов передается дальше на магистраль. Аналогично происходит дублирование трафика в прямом потоке, и аналогично ONT передает далее на пользовательские интерфейсы только одну копию входного сигнала. При повреждении волокна или приемо-передающих интерфейсов переключение на резервный канал будет очень быстрым и не приведет к прерыванию связи. Не обязательно подключать все абонентские узлы по резервному каналу. Здесь также, как и во втором варианте не обязательно подключать все абонентские узлы по резервному каналу.

Применение PON

Сегодня PON используется для реализации структур «оптическое волокно до здания» (FTTB), «волокно до жилища» (FTTH), «волокно до распределительной коробки» (FTTC), FTTx (Fiber-To-The-x) – «оптика до точки Х». Структуры на базе PON очень разнородны и ориентированы на решение задач разного масштаба. Одни из них больше подходят для массового применения, другие — для корпоративных пользователей, эффективность некоторых особенно наглядно проявляется для крупных зданий, а иных — для отдельных строений в пригороде.

Главными преимуществами PON, по мнению специалистов, являются существенная экономия оптического волокна при эффективном использовании его ресурсов, двух-, трехкратное снижение стоимости кабельной инфраструктуры, повышение надежности вследствие применения пассивных промежуточных узлов и терминальности узлов пользователей (выход из строя такого узла не влияет на работу остальных), возможность предоставления различных услуг и простота наращивания числа абонентов. При относительно низкой стоимости электроники соответствующее решение зачастую оказывается предпочтительным для малого и среднего бизнеса.

На сегодняшний день существует множество примеров успешного построения масштабных коммерческих проектов на базе PON.

Технология PON свободна от многих недостатков Metro Ethernet и позволяет строить оптические сети до подъезда (FTTC) и даже до квартиры (FTTH). На первый взгляд, PON значительно дороже Metro Ethernet, однако с учетом операционных затрат PON более эффективен в среднесрочном периоде (3 – 5 лет). В сегменте FTTC/FTTH наиболее экономичным является EPON, наиболее перспективным – GPON

Стандарты

1. ITU-T G.983

- APON (ATM Passive Optical Network)

- BPON (Broadband PON)

2. ITU-T G.984

- GPON (Gigabit PON)

3. IEEE 802.3ah

- EFMC (EFM copper) – решение “точка-точка” с использованием витых медных пар. Из двух альтернатив, между которыми развернулась основная борьба – (G.SHDSL и ADSL+) выбор был сделан в пользу G.SHDSL;

- EFMF (EFM fiber) – решение, основанное на соединении “точка-точка” по волокну. Здесь предстоит стандартизировать различные варианты: “дуплекс по одному волокну, на одинаковых длинах волн”, “дуплекс по одному волокну, на разных длинах волн”, “дуплекс по паре волокон”, новые варианты оптических приемопередатчиков;

- EFMP (EFM PON) – решение, основанное на соединении “точка-многоточка” по волокну. Это решение, являющееся по сути альтернативой APON, получило схожее название EPON.

4. IEEE 802.3av

- 10GEPON (10 Gigabit Ethernet PON)

Топологии сетей доступа

Существуют четыре основные топологии построения оптических сетей доступа:


а) "Кольцо". Кольцевая топология на основе SDH положительно зарекомендовала себя в городских телекоммуникационных сетях. Однако в сетях доступа не все обстоит также хорошо. Если при построении городской магистрали расположение узлов планируется на этапе проектирования, то в сетях доступа нельзя заранее знать где, когда и сколько абонентских узлов будет установлено. При случайном территориальном и временном подключении пользователей кольцевая топология может превратится в сильно изломанное кольцо со множеством ответвлений, подключение новых абонентов осуществляется путем разрыва кольца и вставки дополнительных сегментов. На практике часто такие петли совмещаются в одном кабеле, что приводит к появлению колец, похожих больше на ломаную – "сжатых" колец (collapsed rings), что значительно снижает надежность сети. Фактически главное преимущество кольцевой топологии сводится к минимуму.


б) "Точка-точка"(P2P). Топология P2P не накладывает ограничения на используемую сетевую технологию. P2P может быть реализована как для любого сетевого стандарта, так и для нестандартных (proprietary ) решений, например, использующих оптические модемы. С точки зрения безопасности и защиты передаваемой информации, при соединении P2P обеспечивается максимальная защищенность абонентских узлов. Поскольку ОК нужно прокладывать индивидуально до абонента, этот подход является наиболее дорогим и привлекателен в основном для крупных абонентов.


в) "Дерево с активными узлами". Дерево с активными узлами – это экономичное с точки зрения использования волокна решение. Это решение хорошо вписывается в рамки стандарта Ethernet с иерархией по скоростям от центрального узла к абонентам 1000/100/10 Мбит/с (1000Base-LX, 100Base-FX, 10Base-FL). Однако в каждом узле дерева обязательно должно находиться активное устройство (применительно к IP-сетям, коммутатор или маршрутизатор). Оптические сети доступа Ethernet, преимущественно использующие данную топологию, относительно недороги. К основному недостатку следует отнести наличие на промежуточных узлах активных устройств, требующих индивидуального питания.


г) "Дерево с пассивным оптическим разветвлением PON (P2MP)". Решения на основе архитектуры PON используют логическую топологии "точка-многоточка" P2MP (point-to-multipoint) , которая положена в основу технологии PON, к одному порту центрального узла можно подключать целый волоконно-оптический сегмент древовидной архитектуры, охватывающий десятки абонентов. При этом в промежуточных узлах дерева устанавливаются компактные, полностью пассивные оптические разветвители (сплиттеры), не требующие питания и обслуживания.

Общеизвестно, что PON позволяет экономить на кабельной инфраструктуре, за счет сокращения суммарной протяженности оптических волокон, т.к. на участке от центрального узла до разветвителя используется всего одно волокно. В меньшей степени обращают внимание на другой источник экономии – сокращение числа оптических передатчиков и приемников в центральном узле. Между тем экономия о второго фактора в некоторых случаях оказывается даже более существенной. Так по оценкам компании NTT конфигурация PON с разветвителем в центральном офисе в непосредственной близости к центральному узлу оказывается экономичнее, чем сеть точка-точка, хотя сокращение длины оптического волокна практически нет! Более того, если расстояния до абонентов не велики (как в Японии) с учетом затрат на эксплуатацию (в Японии это существенный фактор) оказывается, что PON с разветвителем в центральном офисе экономичнее, чем PON с разветвителем, приближенным к абонентским узлам.

Источник — «http://wiki.mvtom.ru/index.php/PON»
Просмотры
Инструменты

Besucherzahler russian mail order brides
счетчик посещений
Rambler's Top100
Лингафонные кабинеты  Интерактивные доски  Интерактивная приставка Mimio Teach