Этапы развития вычислительной техники

Материал из ПИЭ.Wiki

Перейти к: навигация, поиск

Выделяют четыре этапа развития вычислительной техники:

  • Домеханический — с 40—30-го тысячелетия до н. э.
  • Механический — с середины XVII в.
  • Электромеханический — с 90-х годов XIX в.
  • Электронный — со второй половины 40-х годов XX в.


Содержание

Домеханический этап

Ручной период автоматизации вычислений начался на заре человеческой цивилизации и базировался на использовании частей тела,
Суань-пань
в первую очередь пальцев рук и ног. Пальцевый счет уходит корнями в глубокую древность, встречаясь в том или ином виде у всех народов и в наши дни. Конечно, счёт был примитивным, а уровень абстракции очень низким. Понятие числа максимально конкретно, оно неразрывно связано с предметом (т.е. это, например, не число «два», а «две рыбы», «два коня» и т.д.). Диапазон счёта невелик. Можно выделить три типа таких счётных приспособлений. Искусственные приспособления: зарубки (насечки) на различных предметах, в Южной Америке получают широкое распространение узелки на верёвках. Предметный счёт, когда используются предметы типа камешков, палочек, зёрен и т.д. Часто этот тип счёта использовался вместе с пальцевым. Счёт с помощью предметов был предшественником счёта на абаке - наиболее развитом счётном приборе древности, сохранившем некоторое значение в настоящее время (в виде русских счётов, китайского суань-паня и др.). Под абаком понимается счётный прибор, на котором отмечены места (колонки или строчки) для отдельных разрядов чисел.


Механический этап

Леонардо да Винчи (Leonardo da Vinci, 1452–1519)

Под механическим вычислительным устройством понимается устройство, построенное на механических элементах и обеспечивающее автоматическую передачу из низшего разряда в высший. Один из первых арифмометров, точнее «суммирующая машина», был изобретен Леонардо да Винчи (Leonardo da Vinci, 1452–1519) около 1500 года. Правда, о его идеях никто не знал на протяжении почти четырех столетий. Рисунок этого устройства был обнаружен только в 1967 году, и по нему фирма IBM воссоздала вполне работоспособную 13-разрядную суммирующую машину, в которой использован принцип 10-зубых колес.

Десятью годами раньше в результате исторических изысканий в Германии были обнаружены чертежи и описание арифмометра, выполненные в 1623 году Вильгельмом Шиккардом (Wilhelm Schickard, 1592–1636), профессором математики университета в Тюбингене. Это была весьма «продвинутая» 6-разрядная машина, состоявшая из трех узлов: устройства сложения-вычитания, множительного устройства и блока записи промежуточных результатов. Если сумматор был выполнен на традиционных зубчатых ко-лесах, имевших кулачки для передачи в соседний разряд единицы переноса, то множитель был построен весьма изощренно. В нем немецкий профессор применил метод «решетки», когда при помощи «насаженной» на валы зубчатой «таблицы умножения» происходит перемножение каждой цифры первого сомножителя на каждую цифру второго, после чего со сдвигом складываются все эти частные произведения.

Блез Паскаль (Blaise Pascal, 1623–1662)

Эта модель оказалась работоспособной, что было доказано в 1957 году, когда она была воссоздана в ФРГ. Однако неизвестно, смог ли сам Шиккард построить свой арифмометр. Есть свидетельство, содержащееся в его переписке с астрономом Иоганном Кеплером (Johannes Kepler, 1571–1630) относительно того, что недостроенная мо-дель погибла в огне во время пожара в мастерской. К тому же автор, вскоре скончавшийся от холеры, не успел внедрить в научный обиход сведения о своем изобретении, и о нем стало известно лишь в середине ХХ века.

Поэтому Блез Паскаль (Blaise Pascal, 1623–1662), который первым не только сконструировал, но и построил работоспособный арифмометр, начинал, как говорится, с ну-ля. Блистательный французский ученый, один из создателей теории вероятностей, автор нескольких важных математических теорем, естествоиспытатель, открывший атмосферное давление и определивший массу земной атмосферы, и выдающийся мыслитель, был в повседневной жизни любящим сыном президента королевской палаты сборов. Девятнадцатилетним юношей, в 1642 году, желая помочь отцу, тратившему много времени и сил, составляя финансовые отчеты, он сконструировал машину, которая могла складывать и вычитать числа.

Первый образец постоянно ломался, и через два года Паскаль сделал более совершенную модель. Это была чисто финансовая машина: она имела шесть десятичных раз-рядов и два дополнительных: один поделенный на 20 частей, другой на 12, что соответствовало соотношению тогдашних денежных единиц (1 су = 1/20 ливра, 1 денье = 1/12 су). Каждому разряду соответствовало колесо с конкретным количеством зубцов.

За свою недолгую жизнь Блез Паскаль, проживший всего 39 лет, успел сделать около пятидесяти счетных машин из самых разнообразных материалов: из меди, из различных пород дерева, из слоновой кости. Одну из них ученый преподнес канцлеру Сегье (Pier Seguier, 1588–1672), какие-то модели распродал, какие-то демонстрировал во время лекций о последних достижениях математической науки. 8 экземпляров дошло до наших дней.

Готфрид Лейбниц (Gottfried Leibniz, 1646–1716)

Именно Паскалю принадлежит первый патент на «Паскалево колесо», выданный ему в 1649 году французским королем. В знак уважения к его заслугам в области «вычислительной науки», один из современных языков программирования назван Паскалем.

Классическим инструментом механического типа является арифмометр (устройство для выполнения четырёх арифметических действий), изобретённый Готфридом Лейбницем (Gottfried Leibniz, 1646–1716) в 1673 году. Полученная в результате напряженного поиска 8-разрядная модель могла складывать, вычитать, умножать, делить, возводить в степень. Результат умножения и деления имел 16 знаков. Лейбниц применил в своем арифмометре такие конструктивные элементы, которые использовались при проектировании новых моделей вплоть до ХХ века. В XVII-XVIII вв. сколько-нибудь значительной практической потребности в механизации вычислительных работ не существовало. Интерес к механизации вычислений был вызван, в частности, общефилософскими и общенаучными установками того времени, когда законы и принципы механики рассматривались как общие законы бытия. В XIX в. в связи с развитием промышленной революции, возникает потребность в механизации конторских работ.

Арифмометр

Пионером серийного изготовления счетных машин стал эльзасец Шарль-Ксавье Тома де Кольмар (Charles-Xavier Thomas de Colmar, 1785–1870). Введя в модель Лейбница ряд эксплуатационных усовершенствований, он в 1821 году начинает выпускать в своей парижской мастерской 16-разрядные арифмометры, которые получают известность как «томас-машины». На первых порах они стоили недешево — 400 франков. И выпускались в не столь уж и больших количествах — до 100 экземпляров в год. Но к концу века появляются новые производители, возникает конкуренция, цены понижаются, а количество покупателей возрастает.

Различные конструкторы как в Старом, так и в Новом свете патентуют свои моде-ли, которые отличаются от классической модели Лейбница лишь введением дополнительных удобств в эксплуатации. Появляется звонок, сигнализирующий об ошибках типа вычитания из меньшего числа большего. Наборные рычажки заменяются клавишами. Приделывается ручка для переноса арифмометра с места на место. Повышаются эргономические показатели. Совершенствуется дизайн.

В конце XIX века на мировой рынок арифмометров самым решительным образом вторглась Россия. Автором этого прорыва стал обрусевший швед Вильгодт Теофилович Однер (1846–1905), талантливый изобретатель и удачливый бизнесмен. До того, как заняться выпуском счетных машин, Вильгодт Теофилович сконструировал устройство автоматизированной нумерации банкнот, применявшееся при печатании ценных бумаг. Ему принадлежит авторство машины для набивки папирос, автоматического ящика для голосования в Государственной Думе, а также турникетов, применявшиеся во всех су-доходных компаниях России.

В 1875 году Однер сконструировал свой первый арифмометр, права на производство которого передал машиностроительному заводу «Людвиг Нобель». Спустя 15 лет, став владельцем мастерской, Вильгодт Теофилович налаживает в Петербурге выпуск новой модели арифмометра, которая выгодно отличается от существовавших на тот момент счетных машин компактностью, надежностью, простотой в обращении и высокой производительностью.

Чарльз Бэббидж (Charls Babbige, 1791-1871)

Спустя три года мастерская становится мощным заводом, производящим в год более 5 тысяч арифмометров. Изделие с клеймом «Механический завод В. Т. Однер, С-Петербург» начинает завоевывать мировую популярность, ему присуждаются высшие награды промышленных выставок в Чикаго, Брюсселе, Стокгольме, Париже. В начале ХХ века арифмометр Однера начинает доминировать на мировом рынке. Таким образом к концу XIX в. производство арифмометров становится массовым.


Однако предшественником современных ЭВМ является аналитическая машина Чарльза Бэббиджа. Проект аналитической машины, представляющей собой цифровую вычислительную машину с программным управлением, был предложен Бэббиджем в 30-е годы XIX века. А в 1843 г. для этой машины была создана первая достаточно сложная машинная программа: программа вычислений чисел Бернулли, составленная Адой Лав-лейс. Оба эти достижения были феноменальными. Они более чем на столетие опередили своё время. Только в 1943 г. американец Говард Эйкен с помощью работ Бэббиджа на основе техники XX века — электромеханических реле — смог построить такую машину под названием «Марк-1».

Электромеханический этап

Герман Холлерит (Herman Hollerith, 1860–1929)

Электромеханический этап развития ВТ явился наименее продолжительным и охватывает всего около 60 лет — от первого табулятора Германа Холлерита (1887 г.) до первой ЭВМ ЕNIАС (1945 г.). Предпосылками создания проектов данного этапа явились как необходимость проведения массовых расчетов (экономика, статистика, управление и планирование и др.), так и развитие прикладной электротехники (электропривод и электромеханические реле), позволившие создавать электромеханические вычислительные устройства. Если вернуться к предыдущим этапам развития ВТ, то можно заметить, что каждый этап характеризуется созданием технических средств нового типа, обладающих более высокой производительностью и более широкой сферой применения, чем предыдущие этапы. Классическим типом средств электромеханического этапа был счетно-аналитический комплекс, предназначенный для обработки информации на перфокарточных носителях.

Первый счетно-аналитический комплекс был создан в США Г. Холлеритом в 1887 г. и состоял из ручного перфоратора, сортировочной машины и табулятора. Значение работ Г. Холлерита для развития ВТ определяется двумя основными факторами. Во-первых, он стал основоположником нового направления в ВТ — счетно-перфорационного (счетно-аналитического), состоящего в применении табуляторов и со-путствующего им оборудования для выполнения широкого круга экономических и научно-технических расчетов. На основе этой ВТ создаются машинно-счетные станции для механизированной обработки информации, послужившие прообразом современных вычислительных центров (ВЦ). В 20—30-е годы 20 века применение счетно-перфорационной техники становится ведущим фактором развития ВТ; только появление ЭВМ ограничило ее применение.

Табулирующая машина Г.Холлерита

Во-вторых, даже после прекращения использования табуляторов основным носителем информации (ввод/вывод) для ЭВМ остается перфокарта, а в качестве периферийных используются перфокарточные устройства (например перфораторы), предложенные Холлеритом. Даже в наше время использование большого числа разнообразных устройств ввода/вывода информации не отменило полностью использования перфокарточной технологии. Прежде всего, это относится к большим и су-пер-ЭВМ. Таким образом, перфокарточная технология обработки информации с использованием ВТ, впервые предложенная Бэбиджем и реализованная Холлеритом, до сих пор не сдана в музей истории вычислительной техники.

Последним же крупным проектом следует считать построенную в 1957 г. в СССР релейную вычислительную машину (РВМ-1) и эксплуатирующуюся до конца 1964 г. в основном для решения экономических задач. Например, на ней производился перерасчет цен на товары в связи с денежной реформой 1961 г. Создание модели РВМ-1 хоть и было весьма запоздалым, но проект ее был чрезвычайно удачным и представляется нам венцом развития релейной ВТ; РВМ-1 на целом ряде задач была вполне конкурентоспособна с ЭВМ того времени, весьма надежна и ее быстродействие было на уровне первых малых ЭВМ

Электронный этап

Электронный этап можно разбить на поколения ЭВМ.

Просмотры
Инструменты

Besucherzahler russian mail order brides
счетчик посещений
Rambler's Top100
Лингафонные кабинеты  Интерактивные доски  Интерактивная приставка Mimio Teach