Экспертная система

Материал из ПИЭ.Wiki

Перейти к: навигация, поиск

Экспертная система - это система искусственного интеллекта, построенная на основе глубоких специальных знаний о некоторой предметной области (полученных от экспертов-специалистов этой области). Экспертные системы – один из немногих видов систем искусственного интеллекта, которые получили широкое распространение и нашли практическое применение. Существуют экспертные системы по военному делу, геологии, инженерному делу, информатике, космической технике, математике, медицине, метеорологии, промышленности, сельскому хозяйству, управлению, физике, химии, электронике, юриспруденции и т.д. И только то, что экспертные системы остаются весьма сложными, дорогими, а главное, узкоспециализированными программами, сдерживает их еще более широкое распространение.

Технология экспертных систем является одним из направлений новой области исследования, которая получила наименование искусственного интеллекта (Artificial Intelligence — AI). Исследования в этой области сконцентрированы на разработке и внедрении компьютерных программ, способных эмулировать (имитировать, воспроизводить) те области деятельности человека, которые требуют мышления, определенного мастерства и накопленного опыта. К ним относятся задачи принятия решений, распознавания образов и понимания человеческого языка. Эта технология уже успешно применяется в некоторых областях техники и жизни общества — органической химии, поиске полезных ископаемых, медицинской диагностике. Перечень типовых задач, решаемых экспертными системами, включает:

  • извлечение информации из первичных данных (таких как сигналы, поступающие от гидролокатора);
  • диагностика неисправностей (как в технических системах, так и в человеческом организме);
  • структурный анализ сложных объектов (например, химических соединений);
  • выбор конфигурации сложных многокомпонентных систем (например, распределенных компьютерных систем);
  • планирование последовательности выполнения операций, приводящих к заданной цели (например, выполняемых промышленными роботами).

Содержание

Особенности экспертных систем

  • компетентность – в конкретной предметной области экспертная система должна достигать того же уровня, что и специалисты-люди; при этом она должна пользоваться теми же эвристическими приемами, также глубоко и широко отражать предметную область;
  • символьные рассуждения – знания, на которых основана экспертная система, представляют в символьном виде понятия реального мира, рассуждения также происходят в виде преобразовании символьных наборов;
  • глубина – экспертиза должна решать серьезные, нетривиальные задачи, отличающиеся сложностью знаний, которые экспертная система использует, или обилием информации; это не позволяет использовать полный перебор вариантов как метод решения задачи и заставляет прибегать к эвристическим, творческим, неформальным методам;
  • самосознание – экспертная система должна включать в себя механизм объяснения того, каким образом она приходит к решению задачи.

Экспертные системы создаются для решения разного рода проблем, но они имеют схожую структуру (рис. 8); основные типы их деятельности можно сгруппировать в категории, приведенные в табл. 2.

Рис. 1. Схема обобщенной экспертной системы

Рис.1.Схема обобщенной экспертной системы


Таблица 1. Типичные категории способов применения экспертных систем

Категория Решаемая проблема
Интерпретация Описание ситуации по информации, поступающей от датчиков
Прогноз Определение вероятных последствий заданных ситуаций
Диагностика Выявление причин неправильного функционирования системы по наблюдениям
Проектирование Построение конфигурации объектов при заданных ограничениях
Планирование Определение последовательности действий
Наблюдение Сравнение результатов наблюдений с ожидаемыми результатами
Отладка Составление рецептов исправления неправильного функционирования системы
Ремонт Выполнение последовательности предписанных исправлений
Обучение Диагностика и исправление поведения обучаемого
Управление Управление поведением системы как целого

Функции, выполняемые экспертной системой

Не всякую систему, основанную на знаниях, можно рассматривать как экспертную. Экспертная система должна также уметь каким-то образом объяснять свое поведение и свои решения пользователю, так же, как это делает эксперт-человек. Это особенно необходимо в областях, для которых характерна неопределенность, неточность информации (например, в медицинской диагностике). В этих случаях способность к объяснению нужна для того, чтобы повысить степень доверия пользователя к советам системы, а также для того, чтобы дать возможность пользователю обнаружить возможный дефект в рассуждениях системы. В связи с этим в экспертных системах следует предусматривать дружественное взаимодействие с пользователем, которое делает для пользователя процесс рассуждения системы "прозрачным".

Часто к экспертным системам предъявляют дополнительное требование - способность иметь дело с неопределенностью и неполнотой. Информация о поставленной задаче может быть неполной или ненадежной; отношения между объектами предметной области могут быть приближенными. Например, может не быть полной уверенности в наличии у пациента некоторого симптома или в том, что данные, полученные при измерении, верны; лекарство может стать причиной осложнения, хотя обычно этого не происходит. Во всех этих случаях необходимы рассуждения с использованием вероятностного подхода.

В самом общем случае для того, чтобы построить экспертную систему, мы должны разработать механизмы выполнения следующих функций системы:

  • решение задач с использованием знаний о конкретной предметной области - возможно, при этом возникнет необходимость иметь дело с неопределенностью;
  • взаимодействие с пользователем, включая объяснение намерений и решений системы во время и после окончания процесса решения задачи.

Каждая из этих функций может оказаться очень сложной и зависит от прикладной области, а также от различных практических требований. В процессе разработки и реализации могут возникать разнообразные трудные проблемы. Здесь мы ограничился наметками основных идей, подлежащих в дальнейшем детализации и усовершенствованию.

Структура экспертных систем

Архитектура экспертной системы

Рис.2. Архитектура экспертной системы


Классы экспертных систем

По степени сложности решаемых задач экспертные системы можно классифицировать следующим образом:

- По способу формирования решения экспертные системы разделяются на два класса: аналитические и синтетические. Аналитические системы предполагают выбор решений из множества известных альтернатив (определение характеристик объектов), а синтетические системы - генерацию неизвестных решений (формирование объектов).

- По способу учета временного признака экспертные системы могут быть статическими или динамическими. Статические системы решают задачи при неизменяемых в процессе решения данных и знаниях, динамические системы допускают такие изменения. Статические системы осуществляют монотонное непрерываемое решение задачи от ввода исходных данных до конечного результата, динамические системы предусматривают возможность пересмотра в процессе решения полученных ранее результатов и данных.

- По видам используемых данных и знаний экспертные системы классифицируются на системы с детерминированными (четко определенными) знаниями и неопределенными знаниями. Под неопределенностью знаний (данных) понимается их неполнота (отсутствие), недостоверность (неточность измерения), двусмысленность (многозначность понятий), нечеткость (качественная оценка вместо количественной).

- По числу используемых источников знаний экспертные системы могут быть построены с использованием одного или множества источников знаний. Источники знаний могут быть альтернативными (множество миров) или дополняющими друг друга (кооперирующими).


Наиболее известные/распространённые ЭС

  • CLIPS — весьма популярная ЭС (public domain)
  • OpenCyc — мощная динамическая ЭС с глобальной онтологической моделью и поддержкой независимых контекстов
  • WolframAlpha — поисковая система, интеллектуальный «вычислительный движок знаний»
  • MYCIN — наиболее известна диагностическая система, которая предназначена для диагностики и наблюдения за состоянием больного при менингите и бактериальных инфекциях.
  • HASP/SIAP — интерпретирующая система, которая определяет местоположение и типы судов в тихом океане по данным

акустических систем слежения.

Этапы проектирования экспертной системы

В настоящее время сложилась определенная технология разработки ЭС, которая включает следующие шесть этапов:

Методика (этапы) разработки ЭС

Рис. 3. Методика (этапы) разработки ЭС

На всех этапах разработки инженер по знаниям играет активную роль, а эксперт - пассивную. По мере развития самообучающихся свойств экспертных систем роль инженера по знаниям уменьшается, а активное поведение заинтересованного в эффективной работе экспертной системы пользователя-эксперта возрастает. Описание приемов извлечения знаний инженерами знаний представлено в таблице 2.

Приемы Описание
1. Наблюдение Инженер наблюдает, не вмешиваясь, за тем, как эксперт решает реальную задачу
2. Обсуждение задачи Инженер на представительном множестве задач неформально обсуждает с экспертом данные, знания и процедуры решения
3. Описание задачи Эксперт описывает решение задач для типичных запросов
4. Анализ решения Эксперт комментирует получаемые результаты решения задачи, детализируя ход рассуждений
5. Проверка системы Эксперт предлагает инженеру перечень задач для решения (от простых до сложных),которые решаются разработанной системой
6. Исследование системы Эксперт исследует и критикует структуру базы знаний и работу механизма вывода
7. Оценка системы Инженер предлагает новым экспертам оценить решения разработанной системы

Таблица 2

Первые два этапа разработки экспертной системы составляют логическую стадию, не связанную с применением четко определенного инструментального средства. Последующие этапы реализуются в рамках физического создания проекта на базе выбранного инструментального средства. Вместе с тем, процесс создания экспертной системы, как сложного программного продукта, имеет смысл выполнять методом прототипного проектирования, сущность которого сводится к постоянному наращиванию базы знаний, начиная с логической стадии.

Литература

http://window.edu.ru

http://belani.narod.ru/

http://chernykh.net/

--Давыденко Евгения 22:20, 12 января 2011 (UTC)

Просмотры
Инструменты

Besucherzahler russian mail order brides
счетчик посещений
Rambler's Top100
Лингафонные кабинеты  Интерактивные доски  Интерактивная приставка Mimio Teach