Монитор

Материал из ПИЭ.Wiki

Перейти к: навигация, поиск

Монитор - это устройство вывода графической и текстовой информации в форме, доступной пользователю. Мониторы входят в состав любой компьютерной системы. Они являются визуальным каналом связи со всеми прикладными программами и стали жизненно важным компонентом при определении общего качества и удобства эксплуатации всей компьютерной системы. В настоящее время развитие компьютерных технологий требует разработки новых мониторов большего размера и новых возможностей. Создаваемые новые программы по работе с трехмерной графикой уже не могут нормально воспроизводиться на старых мониторах. Все это привело компаний-разработчиков к усовершенствованию тех технологий в области воспроизведения информации, которые имеют место быть.


Содержание

Классификация мониторов

По виду выводимой информации

  • алфавитно-цифровые:
    • дисплеи, отображающие только алфавитно-цифровую информацию
    • дисплеи, отображающие псевдографические символы
    • интеллектуальные дисплеи, обладающие редакторскими возможностями и осуществляющие предварительную обработку данных
  • графические:
    • векторные
    • растровые

По строению

  • Электронно-лучевая трубка(ЭЛТ) — на основе электронно-лучевой трубки (англ. cathode ray tube, CRT)
  • ЖК— жидкокристаллические мониторы (англ. liquid crystal display, LCD)
  • Плазменный монитор — на основе плазменной панели
  • Проектор — видеопроектор и экран, размещённые отдельно или объединённые в одном корпусе (как вариант — через зеркало или систему зеркал)
  • OLED-монитор — на технологии OLED (англ. organic light-emitting diode — органический светоизлучающий диод)
  • Виртуальный ретинальный монитор — технология устройств вывода, формирующая изображение непосредственно на сетчатке глаза.
  • Лазерный монитор — на основе лазерной панели

По типу видеоадаптера

  • МDA (Monochrome Display Adapter) разработан в 1981г. Монохромный адаптер, применяемый в первых PC. Режим работы - только текстовой, монохромный, 4 цвета реализуются атрибутами знакоместа: обычный, подсвеченный, подчеркнутый, инверсный.
  • MGA (Monochrome Graphics Adapter) разработан в 1982г. Монохромный графический адаптер, графическое расширение MDA, обеспечивается режим 720x350 с двумя битами на пиксел. Иногда называют Hercules Graphics Adapter (HGC, Hercules Graphic Controller).
  • CGA (Color Graphics Adapter), цветной графический адаптер. Первая графическая система PC. Режимы - текстовой и графический, разрешение низкое, особенно по вертикали.
  • EGA (Enhanced Graphics Adapter), улучшенный (расширенный) графический адаптер. Режимы работы - текстовый и графический, кроме собственных видео-режимов поддерживает режимы MDA и CGA.
  • PGA (Professional Graphic Adapter), профессиональный графический адаптер с процессором трехмерной графики. Появился в 1984 году и не прижился из-за высокой цены.
  • MCGA (Multi Color Graphics Array), блок видеосистемы на системной плате PS/2. Поддерживаются режимы CGA и другие.
  • VGA (Video Graphics Array), видеографическая матрица. Появился как блок видеосистемы на системной плате PS/2, затем стал самостоятельным стандартным адаптером. Режимы: текстовой и графический. Поддерживает режимы MDA, CGA, EGA и дополнительные... Обеспечивает 256 цветов на экране из палитры 262144 цветов или 64 градации серого. Адаптеры различных производителей могут различаться на аппаратном уровне, совместимость обеспечивается на уровне BIOS-а.
  • IBM 8514/A display adapter - адаптер для шины MCA PS/2. Превосходит VGA по разрешению, имеет аппаратную поддержку многих функций. Все преимущества реализуются только с монитором IBM 8514.
  • XGA, XGA-2 (eXtended Graphics Array), высокопроизводительные 32-битные адаптеры. Хорошо сочетаются с монитором IBM 8514.
  • SVGA (Super Video Graphics Array) разработан в 1991г, видеографическая матрица высокого класса, превосходят VGA по разрешению (от 800*600 и выше) и/или количеству цветов (True Color 16-32 млн цветов). Является стандартом среди видео-карт с 1992 года. В режимах VGA эти адаптеры стандартизированы, на более высоком разрешении взаимной совместимости на уровне регистров нет.

По типу интерфейсного кабеля

  • Композитный интерфейс - используется для передачи видеосигнала. Сигнал передается через одиночный коаксиальный кабель, для подключения обычно применяется разъем типа RCA ("тюльпан").
  • S-Video ((Separate Video, раздельный) - используется для передачи видеосигнала. В качестве разъема для интерфейса S-Video обычно применяется круглый четырехконтактный разъем 4-pin mini DIN.
  • VGA - это стандартный интерфейс для компьютерных мониторов. Он включает в себя сигналы трех основных цветов, сигналы синхронизации и специальный канал для передачи служебной информации между монитором и компьютером. Интерфейс VGA позволяет передавать видеоизображение практически без искажений, с очень высоким качеством. Разъемом обычно служит HD D-Sub 15 pin.
  • Digital Visual Interface(DVI) - используется для передачи видеосигнала в цифровом виде. DVI оснащены многие ЖК-мониторы, ЖК-телевизоры, плазменные панели. Поскольку передача видеосигнала происходит в цифровом виде, то изображение получается без искажений и помех. Если на вашем устройстве отображения есть возможность подключения по DVI, то для получения изображения высокого качества лучше всего использовать именно этот интерфейс.
  • HDMI - используется для передачи цифрового видеосигнала и многоканального аудио в цифровом виде. В этом интерфейсе предусмотрена поддержка защиты от нелегального копирования HDCP (High-bandwidth Digital Content Protection). Интерфейс HDMI совместим с DVI. С помощью специального переходника HDMI можно соединить с DVI и использовать его для передачи цифрового сигнала. Нужно отметить, что при таком соединении передается только видеосигнал, для передачи аудио нужно использовать дополнительный кабель. Для передачи изображения от источника защищенного видеоконтента потребуется DVI-интерфейс с поддержкой HDCP.

По цветности

  • Цветные
  • Монохромные


Основные параметры и характеристики монитора

Физические

Размер рабочей области экрана

Размер экрана - это размер по диагонали от одного угла экрана до другого.

У ЖК-мониторов номинальный размер диагонали экрана равен видимому, но у ЭЛТ-мониторов видимый размер всегда меньше.

Изготовители мониторов в дополнение к физическим размерам кинескопов также предоставляют сведения о размерах видимой части экрана. Физический размер кинескопа - это внешний размер трубки. Поскольку кинескоп заключен в пластмассовый корпус, видимый размер экрана немного меньше его физического размера. Так, например, для 14" модели (теоретическая длина диагонали 35,56 см) полезный размер диагонали равен 33,3- 33,8 см в зависимости от конкретной модели, а фактическая длина диагонали 21-дюймовых устройств (53,34 см) составляет от 49,7 до 51 см.

деление современных телескопов по форме

Радиус кривизны экрана ЭЛТ

Современные кинескопы по форме экрана делятся на три типа: сферический, цилиндрический и плоский.

  • У сферических экранов поверхность экрана выпуклая и все пиксели (точки) находятся на равном расстоянии от электронной пушки. Такие ЭЛТ не дороги, но изображение, выводимое на них, не очень высокого качества. В настоящее время применяются только в самых дешевых мониторах.
  • Цилиндрический экран представляет собой сектор цилиндра: плоский по вертикали и закругленный по горизонтали. Преимущество такого экрана - большая яркость по сравнению с обычными плоскими экранами мониторов и меньшее количество бликов на экране.
  • Плоские экраны (Flat Square Tube) наиболее перспективны. Устанавливаются в самых совершенных моделях мониторов. Некоторые кинескопы этого типа на самом деле не являются плоскими - но из-за очень большого радиуса кривизна (80 м - по вертикали, 50 м - по горизонтали) они выглядят действительно плоскими (это, например кинескоп FD Trinitron компании Sony).

Экранное покрытие

Важным параметром кинескопа являются отражающие и защитные свойства его поверхности. Если поверхность экрана никак не обработана, то он будет отражать все предметы, находящиеся за спиной пользователя, а также его самого. Кроме того, поток вторичного излучения, возникающий при попадании электронов на люминофор, может негативно влиять на здоровье человека.

Наиболее распространенным и доступным видом антибликовой обработки экрана является покрытие диоксидом кремния. Это химическое соединение внедряется в поверхность экрана тонким слоем. Если поместить обработанный диоксидом кремния экран под микроскоп, то можно увидеть шершавую, неровную поверхность, которая отражает световые лучи от поверхности под различными углами, устраняя блики на экране. Антибликовое покрытие помогает без напряжения воспринимать информацию с экрана, облегчая этот процесс даже при хорошем освещении. Некоторые изготовители кинескопов добавляют в покрытие также химические соединения, выполняющие функции антистатиков. В наиболее передовых способах обработки экрана для улучшения качества изображения используются многослойные покрытия из различных видов химических соединений. Покрытие должно отражать от экрана только внешний свет. Оно не должно оказывать никакого влияния на яркость экрана и четкость изображения, что достигается при оптимальном количестве диоксида кремния, используемого для обработки экрана.

Частотные

Частота вертикальной развертки

Значение частоты горизонтальной развертки монитора показывает, какое предельное число горизонтальных строк на экране монитора может прочертить электронный луч за одну секунду. Соответственно, чем выше это значение (а именно оно, как правило, указывается на коробке для монитора) тем выше разрешение может поддерживать монитор при приемлемой частоте кадров. Предельная частота строк является критичным параметром при разработке ЖК монитора.

Частота горизонтальной развертки

Это параметр, определяющий, как часто изображение на экране заново перерисовывается. Частота горизонтальной развертки в Гц. В случае с традиционными ЖК мониторами время свечения люминофорных элементов очень мало, поэтому электронный луч должен проходить через каждый элемент люминофорного слоя достаточно часто, чтобы не было заметно мерцания изображения. Если частота такого обхода экрана становится меньше 70 Гц, то инерционности зрительного восприятия будет недостаточно для того, чтобы изображение не мерцало. Чем выше частота регенерации, тем более устойчивым выглядит изображение на экране. Мерцание изображения приводит к утомлению глаз, головным болям и даже к ухудшению зрения. Заметим, что чем больше экран монитора, тем более заметно мерцание, особенно периферийным (боковым) зрением, так как угол обзора изображения увеличивается. Значение частоты горизонтальной развертки зависит от используемого разрешения, от электрических параметров монитора и от возможностей видеоадаптера.

Оптические

Шаг точек(размер пикселя)

Еще одним важным свойством, характеризующим качество мониторов, является расстояние между точками, определяемое конструкцией теневой маски или апертурной решетки, расположенной внутри электронно-лучевого монитора. Теневая маска представляет собой металлическую пластину, встроенную в переднюю часть монитора сразу после слоя люминофора. Пластина содержит тысячи отверстий, используемых для фокусировки лучей, исходящих из электронных пушек, что позволяет единовременно облучать только одну правильно окрашенную точку люминофора. Высокая скорость обновления экрана (60–85 раз в секунду) приводит к тому, что все точки облучаются одновременно. При этом теневая маска позволяет сфокусировать облучение на необходимых точках.

В монохромном мониторе разрешение соответствует размеру зерна люминофора, а в цветном — как минимум одной триаде разноцветных пятен. Термины расстояние между точками или зернистость означают расстояние между соседними триадами в миллиметрах. Экраны, характеризуемые меньшим значением зернистости, имеют более тесно расположенные триады пятен люминофора и поэтому могут формировать более четкое изображение. И наоборот, экраны с большим значением зернистости формируют менее четкое изображение.

Оригинальный цветной монитор IBM PC имел зернистость 0,43 мм — значение, которое теперь не соответствует практически ни одному стандарту. Представленные на рынке современные мониторы имеют зернистость 0,25 мм и меньше. Я бы не рекомендовал приобретать мониторы с зернистостью больше 0,28 мм. Если вы хотите сэкономить средства, то лучше приобретите монитор с меньшим экраном и меньшей зернистостью.

В мониторах Sony Trinitron и Mitsubishi DiamondTron используется особый тип апертурной решетки: вертикальные полосы красного, зеленого и голубого люминофора. Этот тип электронно-лучевой трубки обеспечивает более яркое u1080 и качественное изображение. В таких мониторах зернистость представляет расстояние не между точками, а между полосами. Зернистость 0,25 мм в этих мониторах равноценна расстоянию между точками 0,27 мм в традиционных мониторах.

Компания NEC представила новый тип электронно-лучевой трубки с апертурной решеткой, в которой используются мозаичные ячейки из трех полос цветов люминофора. Естественно, что такой тип трубки обеспечивает еще более качественное изображение по сравнению с предыдущими типами электронно-лучевых трубок.

Допустимые углы обзора

Для ЖК-мониторов это критический параметр, поскольку не у всякого плоскопанельного дисплея угол обзора такой же, как у стандартного монитора ЭЛТ. Проблемы, связанные с недостаточным углом обзора, долгое время сдерживали распространение ЖК-дисплеев. Поскольку свет от задней стенки дисплейной панели проходит через поляризационные фильтры, жидкие кристаллы и ориентирующие слои, то из монитора он выходит большей частью вертикально ориентированным. Если посмотреть на обычный плоский монитор сбоку, то либо изображения вообще не видно, либо все же его можно увидеть, но с искаженными цветами. В стандартном TFT-дисплее с молекулами кристаллов, ориентированными не строго перпендикулярно подложке, угол обзора ограничивается 40 градусами по вертикали и 90 градусами по горизонтали. Контрастность и цвет варьируются при изменении угла, под которым пользователь смотрит на экран. Эта проблема стала приобретать все большую актуальность по мере увеличения размеров ЖК-дисплеев и количества отображаемых ими цветов. Для банковских терминалов это свойство, конечно, очень ценно (так как обеспечивает дополнительную безопасность), но обычным пользователям приносит неудобства. К счастью, производители уже начали применять улучшенные технологии, расширяющие угол обзора. Они позволяют расширить угол обзора до 160 градусов и выше, что соответствует характеристикам ЭЛТ-мониторов. Максимальным углом обзора считается тот, где величина контрастности падает до соотношения 10:1 по сравнению с идеальной величиной (измеренной в точке, непосредственно расположенной над поверхностью дисплея).

Мертвые точки

Их появление характерно для ЖК-мониторов. Это вызвано дефектами транзисторов, а на экране такие неработающие пиксели выглядят как случайно разбросанные цветные точки. Поскольку транзистор не работает, то такая точка либо всегда черная, либо всегда светится. Эффект порчи изображения усиливается, если не работают целые группы точек или даже области дисплея. К сожалению, не существует стандарта, задающего максимально допустимое число неработающих точек или их групп на дисплее. У каждого производителя есть свои нормативы. Обычно 3-5 неработающих точек считается нормой. Покупатели должны проверять этот параметр при получении компьютера, поскольку подобные дефекты не считаются заводским браком и в ремонт не принимаются.

Поддерживаемые разрешения

Максимальное разрешение, поддерживаемое монитором, является одним из ключевых параметров монитора, его указывает каждый производитель. Разрешение обозначает количество отображаемых элементов на экране (точек) по горизонтали и вертикали, например: 1024x768. Физическое разрешение зависит в основном от размера экрана и диаметра точек экрана (зерна) электронно-лучевой трубки экрана (для современных мониторов - 0.28-0.25). Соответственно, чем больше экран и чем меньше диаметр зерна, тем выше разрешение. Максимальное разрешение обычно превосходит физическое разрешение электронно-лучевой трубки монитора.

Функциональные

Конструкция корпуса и подставки

Конструкция монитора должна обеспечивать возможность фронтального наблюдения экрана путем поворота корпуса в горизонтальной плоскости вокруг вертикальной оси в пределах ±30° и в вертикальной плоскости вокруг горизонтальной оси в пределах ±30° с фиксацией в заданном положении. Дизайн мониторов должен предусматривать окраску в спокойные мягкие тона с диффузным рассеиванием света. Корпус монитора должен иметь матовую поверхность одного цвета с коэффициентом отражения 0,4 - 0,6 и не иметь блестящих деталей, способных создавать блики.

Средства управления и регулирования

Под управлением понимают подстройку таких параметров, как яркость, геометрия изображения на экране. Существуют два типа систем управления и регулирования монитора: аналоговые (ручки, движки, потенциометры) и цифровые (кнопки, экранное меню, цифровое управление через компьютер). Аналоговое управление используется в дешевых мониторах и позволяет напрямую изменять электрические параметры в узлах монитора. Как правило, при аналоговом управлении пользователь имеет возможность настраивать только яркость и контраст. Цифровое управление обеспечивает передачу данных от пользователя к микропроцессору, управляющему работой всех узлов монитора. Микропроцессор на основании этих данных делает соответствующие коррекции формы и величины напряжений в соответствующих аналоговых узлах монитора. В современных мониторах используется только цифровое управление, хотя количество контролируемых параметров зависит от класса монитора и варьируется от нескольких простейших параметров (яркость, контраст, примитивная подстройка геометрии изображения) до сверхрасширенного набора (25 - 40 параметров) обеспечивают точные настройки.

Литература

Просмотры
Инструменты

Besucherzahler russian mail order brides
счетчик посещений
Rambler's Top100
Лингафонные кабинеты  Интерактивные доски  Интерактивная приставка Mimio Teach