Звуковая плата

Материал из ПИЭ.Wiki

Перейти к: навигация, поиск
Звуковая плата Creative Labs Sound Blaster Live!
Дешевая звуковая плата C-media с оптическим входом и выходом

Звуковая плата (также называемая звуковая карта или музыкальная плата) (англ. sound card) — это плата, которая позволяет работать со звуком на компьютере. В настоящее время звуковые карты бывают как встроенными в материнскую плату, так и отдельными платами расширения или внешними устройствами.


Содержание

Звуковые платы: основные понятия и термины

Природа звука

Для начала выясним, что такое звук. Звук — это колебания (волны), распространяющиеся в воздухе или другой среде от источника колебаний во всех направлениях. Когда волны достигают вашего уха, расположенные в нем чувствительные элементы воспринимают эту вибрацию и вы слышите звук.

Каждый звук характеризуется частотой и интенсивностью (громкостью).

Частота — это количество звуковых колебаний в секунду; она измеряется в герцах (Гц). Один цикл (период) — это одно движение источника колебания (туда и обратно). Чем выше частота, тем выше тон.

Человеческое ухо воспринимает лишь небольшой диапазон частот. Очень немногие слышат звуки ниже 16 Гц и выше 20 кГц (1 кГц = 1 000 Гц). Частота звука самой низкой ноты на рояле равна 27 Гц, а самой высокой — чуть больше 4 кГц. Наивысшая звуковая частота, которую могут передать радиовещательные FM-станции, — 15 кГц.

Громкость звука определяется амплитудой колебаний. Амплитуда звуковых колебаний зависит в первую очередь от мощности источника звука. Например, струна пианино при слабом ударе по клавише звучит тихо, поскольку диапазон ее колебаний невелик. Если же ударить по клавише посильнее, то амплитуда колебаний струны увеличится. Громкость звука измеряется в децибелах (дБ). Шорох листьев, например, имеет громкость около 20 дБ, обычный уличный шум — около 70 дБ, а близкий удар грома — 120 дБ.

Оценка качества звукового адаптера

Для оценки качества звукового адаптера используется три параметра:

  • диапазон частот;
  • коэффициент нелинейных искажений;
  • отношение сигнал/шум.

Частотная характеристика определяет тот диапазон частот, в котором уровень записываемых и воспроизводимых амплитуд остается постоянным. Для большинства звуковых плат этот диапазон составляет от 30 Гц до 20 кГц.

Коэффициент нелинейных искажений характеризует нелинейность звуковой платы, т. е. отличие реальной кривой частотной характеристики от идеальной прямой, или, проще говоря, коэффициент характеризует чистоту воспроизведения звука. Каждый нелинейный элемент является причиной искажения. Чем меньше этот коэффициент, тем выше качество звука. Этот коэффициент может различаться для аудиоадаптеров с одинаковым набором микросхем. Модели с дешевыми компонентами зачастую имеют значительные искажения, что ухудшает качество звука.

Отношение сигнал/шум характеризует силу звукового сигнала по отношению к фоновому шуму (шипению). Чем больше показатель (в децибелах), тем лучше качество воспроизведения звука. Например, аудиоадаптер Sound Blaster Audigy имеет отношение 100 дБ, в то время как более старая звуковая плата характеризуется отношением 90 дБ.

Перечисленные факторы имеют важное значение для всех сфер применения аудиоадаптеров — от воспроизведения файла WAV до распознавания речи. Не забывайте о том, что дешевые микрофон и акустическая система могут свести на нет все преимущества дорогого аудиоадаптера.

Дискретизация

Если в компьютере установлена звуковая плата, то он может записывать звук в цифровой (называемой также дискретной) форме, в этом случае компьютер используется в качестве записывающего устройства. В состав звуковой платы входит небольшая микросхема — аналого-цифровой преобразователь, или АЦП (Analog-to-Digital Converter — ADC), который при записи преобразует аналоговый сигнал в цифровую форму, понятную компьютеру. Аналогично при воспроизведении цифроаналоговый преобразователь (Digital-to-Analog Converter — DAC) преобразует аудиозапись в звук, который способны воспринимать наши уши.

Дискретизацией называется процесс превращения исходного звукового сигнала в цифровую форму (рис.), в которой он и хранится для последующего воспроизведения. (Процесс преобразования в цифровую форму называется также оцифровыванием.) При этом сохраняются мгновенные значения звукового сигнала в определенные моменты времени, называемые выборками. Чем чаще берутся выборки, тем точнее цифровая копия звука соответствует оригиналу.

Файл:S_20070624190918.jpg

Первым стандартом MPC предусматривался "8-разрядный" звук. Это не означает, что звуковые платы должны были вставляться в 8-разрядный разъем расширения. Разрядность звука характеризует количество бит, используемых для цифрового представления каждой выборки. При восьми разрядах количество дискретных уровней звукового сигнала составляет 256, а если использовать 16 бит, то их количество достигает 65 536. Современные высококачественные аудиоадаптеры поддерживают 24-битовую дискретизацию, причем количество дискретных уровней звукового сигнала составляет более чем 16,8 млн.


История

Поскольку IBM PC проектировался не как мультимедийная машина, а инструмент для решения серьёзных научных и деловых задач, звуковая карта на нём не была предусмотрена и даже не запланирована. Единственный звук, который издавал компьютер, был звук встроенного динамика, сообщавший о неисправностях. Хотя на компьютерах фирмы Apple звук присутствовал изначально.

В 1986 году в продажу поступило устройство фирмы Covox Inc. Оно присоединялось к принтерному порту IBM PC и позволяло воспроизводить монофонический цифровой звук. Пожалуй, covox можно считать первой внешней звуковой платой. Covox был очень прост и дешев по устройству (практически простейший резистивный ЦАП) и оставался популярным в течение 90-х годов. Появилось большое количество модификаций, в том числе - для воспроизведения стереофонического звучания [1].

В 1988 году фирма Creative Labs выпустила устройство Creative Music System (С/MS, позднее также продавалась под названием Game Blaster) на основе двух микросхем звукогенератора Philips SAA 1099, каждая из которых могла воспроизводить по 6 тонов одновременно. Примерно в это же время компания AdLib выпустила свою карту, одноимённую с названием фирмы, на основе микросхемы YM3812 фирмы Yamaha. Данный синтезатор для генерации звука использовал принцип частотной модуляции (FM, frequency modulation). Данный принцип позволял получить более естественное звучание инструментов, чем у Game Blaster.

Вскоре Creative выпустили карту на той же микросхеме, полностью совместимую с AdLib, но превосходящую её по качеству звучания. Эта плата стала основой стандарта Sound Blaster, который в 1991 году Microsoft включила в стандарт Multimedia PC (MPC). Однако эти карты имели ряд недостатков: искусственное звучание инструментов и большие объёмы файлов, одна минута качества AUDIO-CD занимала порядка 10 Мегабайт.

Одним из методов сокращения объёмов, занимаемых музыкой, является MIDI (Musical Instrument Digital Interface) — способ записи команд, посылаемых инструментам. MIDI-файл (обычно это файл с расширением mid) содержит ссылки на ноты. Когда MIDI-совместимая звуковая карта получает эту ссылку, она ищет необходимый звук в таблице (Wave Table). Стандарт General MIDI описывает около 200 звуков. Карты, поддерживающие этот стандарт, обычно имеют память, в которой хранятся звуки, либо используют для этого память компьютера. Одной из первых wavetables-карт была Gravis Ultrasound, получившая в России прозвище «Гусь» (от сокращённого названия GUS). Creative, стремясь упрочить своё положение на рынке, выпустила собственный звуковой процессор EMU8000 (EMU8K) и музыкальную плату на его основе Sound Blaster AWE32, которая была, несомненно, лучшей картой того времени. «32» — это количество голосов MIDI-синтезатора в карточке.

С возрастанием мощности процессоров, постепенно стала отмирать шина ISA, на которой работали все предыдущие звуковые карты, и многие производители переключились на выпуск карты для шины PCI. В 1998 году компания Creative вновь делает широкий шаг в развитии звука и выпуском карты Sound Blaster Live! на аудиопроцессоре EMU10K, который поддерживал технологию Environmental Audio Extensions, устанавливает новый стандарт для IBM PC, который остаётся, в усовершенствованном виде, и по сей день.


Интересные факты

Звуковые карты используются многими радиолюбителями для анализа низкочастотных электрических сигналов, другими словами - в качестве простейшего осциллографа [2].

Допускается «горячее подключение» наушников и микрофона к звуковой карте [3]. Тем не менее при «горячем подключении» на некоторых звуковых картах наблюдается эффект временного пропадания звука — после перезагрузки компьютера звук восстанавливается.


Интегрированная аудио подсистема

AC'97 (сокращенно от Audio Codec '97) — это стандарт для аудиокодеков, разработанный подразделением Intel Architecture Labs компании Intel в 1997 г. Этот стандарт используется в основном в системных платах, модемах, звуковых картах и корпусах с аудиорешением передней панели. AC'97 поддерживает частоту дискретизации 96 кГц при использовании 20ти-разрядного стерео-разрешения и 48кГц при использовании 20ти-разрядного стерео для многоканальной записи и воспроизведения.

AC'97 состоит из встроенного в южный мост чипсета хост-контроллера и расположенного на плате аудиокодека. Хост-контроллер (он же цифровой контроллер, DC'97) (англ. digit controller) отвечает за обмен цифровыми данными между системной шиной и аналоговым кодеком (AC’97). Аналоговый кодек — это небольшой чип (4х4 мм., корпус TSOP, 48 выводов), который осуществляет преобразования аналог->цифра и цифра->аналог в режиме программной передачи или по DMA. Состоит из узла, непосредственно выполняющего аналогово-цифровые преобразования — АЦП/ЦАП (международное обозначение — coder/decoder или просто codec). От качества применяемого АЦП/ЦАП во многом зависит качество оцифровки и воспроизведения звука.

HD Audio (сокращенно от High Definition Audio — звук высокой четкости) — является эволюционным продолжением спецификации AC‘97, предложенным компанией Intel в 2004 году, обеспечивающей воспроизведение большего количества каналов с более высоким качеством звука, чем обеспечивалось при использовании интегрированных аудиокодеков, как AC'97. Аппаратные средства, основанные на HD Audio, поддерживают 192 кГц/24-разрядное качество звучания в двухканальном и 96 кГц/24-разрядное в многоканальном режимах (до 8 каналов).

Форм-фактор кодеков и передачи информации между их элементами остался прежним. Изменилось только качество микросхем и подход к обработке звука.

Отличительные особенности двух форматов.

AC '97 HD Audio Преимущество HD Audio
16 бит 48 кГц максимум 24 бит 192 кГц максимум Полноценная поддержка новых форматов, таких как DVD-Audio
5.1 5.1/7.1 Полноценная поддержка новых форматов, таких как Dolby Digital Surround EX, DTS ES
Полоса пропускания 11.5 Мб/с 48 Мб/с выход, 24 Мб/с вход Выше полоса пропускания позволяет использовать большее число каналов в более детальных форматах
Фиксированная полоса пропускания Задаваемая полоса пропускания Используются только необходимые ресурсы
Определённый канал DMA DMA каналы общего назначения Поддержка многопоточности и нескольких подобных устройств
Одно звуковое устройство в системе Несколько логических звуковых устройств Поддержка концепции Digital Home / Digital Office, вывод разных звуков на разные выводы для мультирумных возможностей и отдельного голосового чата во время онлайн-игр
Опорная частота задаётся извне, основным кодеком Опорная частота берётся от чипсета (I/O Controller Hub, ICH) Единый высококачественный задающий генератор для синхронизации
Стабильность работы зависит от стороннего ПО третьих фирм Универсальная архитектура звукового драйвера от Microsoft Единый драйвер для большей стабильности OS и базовой функциональности, не требуется специальная установка драйверов
Ограниченный device sensing / jack retasking Полный device sensing / jack retasking Полная поддержка audio Plug and Play
Стереомикрофон или 2 микрофона Поддержка массива из 16 микрофонов, максимум Более точные ввод и распознавание речи


Мультимедийные звуковые карты

Это наиболее древняя категория плат: именно они появились первыми и сделали компьютер средством воспроизведения и записи музыки. Эти карты, в отличие от интегрированных, обладают собственным звуковым процессором, который занимается обработкой звука, расчетом трехмерных звуковых эффектов используемых в играх, микшированием звуковых потоков и т.п., что позволяет разгрузить центральный процессор компьютера для обработки более важных задач. Как правило, качество звука в отдельных мультимедиа-картах действительно выше, чем у встроенных. К ним можно подключать не самые плохие компьютерные колонки и наборы акустики – хотя до уровня Hi-Fi еще очень далеко. Домашний кинотеатр будет звучать хорошо в сочетании с комплектами 5.1-акустики, сделанными специально для компьютерного применения. Более того, записывать звук с помощью мультимедийных карт уже можно: на уровне караоке. Несложные программы для работы со звуком будут нормально функционировать. Несколько лет назад рынок мультимедийных плат был весьма насыщенным, велись бои производителей и их продуктов… Самыми яркими конкурентами были Aureal и Creative. Карты этих компаний использовали разные алгоритмы работы с 3D-звуком – у каждой были свои поклонники. С приходом материнских плат со встроенным аудио конфликты разрешились сами собой: все производители дешевых звуковых карт умерли. На плаву осталась только Creative со своей линейкой Sound Blaster Audigy/Audigy2, считающейся топовым уровнем в мультимедиа. Ценовой диапазон: $15-80


Полупрофессиональные звуковые карты

Как правило их выпускают производители профессионального оборудования, ориентируясь не на музыкантов, а на любителей хорошего звука. Они отличаются от мультимедийных в первую очередь профессиональными схемотехническими решениями и высоким качеством воспроизведения звука. При этом в них, как правило, не используются серьезные звуковые процессоры, и опять же всю тяжесть обработки 3D-звука взваливает на себя центральный процессор. Для прослушивания музыки эти карты подходят идеально. При наличии хорошей акустики или наушников вы сможете получить звучание, близкое к недорогой Hi-Fi системе. В качестве основы для кинотеатрального звука такие карты годятся. Звук будет чистым, не искаженным. Как правило, карты от производителей профессионального оборудования комплектуются драйверами для профессиональных же программ для работы с музыкой и звуком. Так что такая плата станет отличным стартом для начинающего музыканта. Впрочем, многие из этих карт непригодны для профессиональной записи звука и в этом плане ничуть не лучше своих мультимедийных коллег. Ценовой диапазон: $80-200


Профессиональные звуковые карты

Эти карты рассчитаны для всех, кто занимается производством и записью музыки. В соответствии с задачами – и особенности: высочайшее качество воспроизведения и записи звука, минимум искажений, максимум возможностей для работы с профессиональным ПО и подключения профессионального оборудования. У профессиональных карт как правило нет мультимедийных драйверов и поддержки DirectX, что делает многие из них бесполезными в играх. Они не поддерживают даже стандартные системные регулировки громкости – каждый канал регулируется в специальной контрольной панели, показывающей уровень сигнала в децибеллах. Входы/выходы вместо стандартного «миниджека» выполнены либо на «тюльпанах» RCA, либо на «больших джеках», либо в виде разъемов XLR, выведенных с помощью специальных интерфейсных кабелей. Многие карты располагают внешним блоками, куда выводятся все разъемы для удобства подключения. Компьютерные колонки здесь просто не подключить. Эти карты рассчитаны на подключение профессиональных студийных акустических мониторов, микшерных пультов, предусилителей и прочих «серьезных» устройств. Карты с разъемами на RCA очень удобны для подключения Hi-Fi аппаратуры и станут хорошим источником звука для хорошей аудиосистемы. Карты с выходами «стереоджек» позволят подключать дорогие наушники без переходников и сопутствующих искажений. Впрочем, как основа для домашнего кинотеатра подойдут лишь немногие из профессиональных плат, количество выходов которых позволит подключить все шесть АС. Ценовой диапазон: $200-$...


Внешние звуковые карты

Это относительно свежая тенденция в мире звуковых плат. Внешние звуковые платы подключаются к компьютеру с помощью интерфейсов USB, USB 2.0 или FireWire. Для чего делают эти устройства? Во-первых, вынос карты за пределы корпуса PC позволяет легко решить некоторые проблемы, связанные с наводками и помехами, идущими от других компонентов компьютера и влияющих на качество звука. Производители дорогих плат решают эти проблемы с помощью качествнных элементов, специальной изоляции и т.п., что повышает стоимость устройства. Во-вторых, все большую популярность набирают barebone-системы – небольшие системные блоки с большим количеством интерфейсных разъемов и, как правило, не более чем одним PCI-слотом. В-третьих, портативная профессиональная звуковая плата, подключаемая «на лету» к любому компьютеру – это готовая портативная студия! Но есть и проблемы. Первые выпущенные для USB устройства не обрели должной популярности из-за невысокой пропускной способности этого интерфейса. Вводились ограничения на количество и качество передаваемых сигналов. Тем не менее на рынке еще достаточно мультимедийных USB-карт, предоставляющих хорошее звучание и небольшое количество вводных/выводных каналов. Сегодня наблюдается настоящий бум на профессиональные карты, подключаемые по шине FireWire: за счет высокой пропускной способности интерфейса не возникает практически никаких проблем с количеством каналов и качеством сигнала. Ценовой диапазон: $60-$1000-...


Устройство и принцип работы звуковой карты

Несмотря на все разнообразие моделей звуковых карт, их возможностей, качества звука и размеров все они имеют примерно одну структуру и основные блоки. Понимание устройства и принципов работы карты сильно облегчает разрешение возникающих при установке и работе проблем, а также позволяет более оптимально конфигурировать ее.

Для начала рассмотрим простейшую и наиболее распространенную однокристальную карту типа Edison Gold 16 на микросхеме ESS1688 или 1868. Эта единственная микросхема на самом деле состоит из трех функционально независимых узлов, составляющих три основных устройства большинства звуковых карт:

  • узел цифрового тракта, ответственный за преобразование звука из аналоговой формы в цифровую и обратно, и обмен цифровым потоком с центральным процессором или памятью компьютера;
  • узел музыкального синтезатора, построенного по частотно-модуляционному (FM) принципу и выполненному в стандарте OPL3;
  • узел аналогового микшера, выполняющего смешивание сигналов с двух предыдущих узлов, а также с линейного и микрофонного входов карты.

Эти три устройства функционально полностью независимы и программируются отдельно друг от друга.

Цифровой тракт такой карты можно считать ее основным узлом, поскольку именно он выполняет преобразование и передачу звука из внешней среды в компьютер и обратно. Для этого тракт имеет АЦП и ЦАП - аналогово-цифровой и цифро-аналоговый преобразователи, между которыми размещена логика управления цифровым потоком. Поступающий на АЦП звук в аналоговой форме - в виде непрерывно меняющегося электрического сигнала - подвергается в нем дискретизации и квантованию. Дискретизация разбивает непрерывный сигнал на последовательность его мгновенных значений - отсчетов, следующих с более высокой частотой (не менее, чем удвоенный верхний предел частотного диапазона), а квантование кодирует уровень каждого отсчета целым числом в диапазоне 0..255 (8-разрядная оцифровка) или 0..65535 (16-разрядная оцифровка). В результате образуется поток чисел, величина которых описывает закон изменения исходного сигнала. Этот поток проходит через схему управления и может считываться оттуда непосредственно процессором через регистры карты, однако чаще всего применяется автоматическая передача напрямую в память (прямой доступ к памяти - DMA), при котором от процессора требуется только настроить начальный адрес и параметры передачи, а все остальное сделают системный контроллер DMA и система управления цифрового тракта карты.

Аналогичным образом работает и обратный процесс: последовательность цифровых отсчетов, забираемая системой управления цифрового тракта карты из памяти, подается на ЦАП, который преобразует числовые значения в уровни напряжения, а затем объединяет дискретную последовательность этих уровней в непрерывный звуковой сигнал, который и снимается с выхода карты.

Все современные карты поддерживают запись и воспроизведение звука на частотах дискретизации до 44.1 кГц с 16-разрядным квантованием; в подавляющем большинстве реализовано также 8-разрядное квантование для работы со звуком низкого качества (параметры телефонной линии). Ряд карт поддерживает частоты дискретизации 48 кГц и выше, а те, что предназначены для профессиональной работы - 18- и 20-разрядное квантование.

В микросхемах ESS1868, Yamaha YM718/719, а также почти во всех остальных современных наборах микросхем для звуковых карт, реализован режим дуплекса (Full Duplex), позволяющий ЦАП и АЦП работать одновременно, параллельно записывая звук со входа в одни области памяти и воспроизводя его из других областей памяти на выход. Благодаря этому режиму можно реализовать весьма интересные возможности - голосовую связь по сети, обработку поступающего звука каким-либо алгоритмом с одновременным (точнее - с небольшой задержкой на обработку) выводом результата, и т.п.

Музыкальный синтезатор OPL3, имеющийся в простых картах, сейчас включается в их состав скорее по традиции и ради совместимости с ранними моделями, нежели для проигрывания музыки. Сам по себе частотно-модуляционный способ синтеза звука является чрезвычайно мощным и плодотворным, что ярко доказала серия профессиональных синтезаторов Yamaha DX, однако в OPL3 реализована лишь бледная тень этих инструментов. Принцип этого метода синтеза заключается во взаимной модуляции нескольких генераторов синусоидального сигнала; каждый управляемый генератор называется оператором. Вместо 6-операторной конфигурации, реализованной в инструментах Yamaha DX7 и DX100, в OPL3 есть только двух- и четырехоператорная, причем последняя допускает только самые примитивные способы соединения операторов. Кроме этого, набор управляющих параметров операторов в OPL3 крайне беден. Все это в совокупности приводит к тому, что OPL3 в состоянии издавать лишь очень малую часть звуков, традиционных для FM, да еще и с довольно низким качеством. Поэтому чаще всего карты, оборудованные только этим синтезатором, считают чисто звуковыми и неспособными исполнять музыку по нотам. На профессиональных звуковых картах OPL3 не ставиться ввиду его явной бесполезности в этих применениях.

Наконец, микшер представляет собой многовходовой аналоговый сумматор с управляемыми коэффициентами усиления по каждому входу, за счет чего он может объединять звук с разных источников карты в одну выходную линию с независимой регулировкой как всех входных, так и выходного уровня и стереобаланса. Помимо цифрового тракта и OPL3, микшер получает сигналы с микрофонного и линейного входов, входа проигрывателя CD, а в ряде моделей - с дополнительной дочерней платы-синтезатора, с добавочного внутреннего входа и входа для подключения сигнала PC Speaker. К последнему разъему при помощи специального провода подключается выход громкоговорителя с системной платы, чтобы издаваемые им звуки можно было слышать в наушниках или колонках.

Кроме смешивания сигналов для подачи на звуковой выход, микшер обеспечивает также смешивание сигналов для подачи на АЦП цифрового тракта - проще говоря, для записи звука. При этом, в зависимости от модели микшера, регулировки уровней записи и контроля могут быть раздельными или совмещенными, выбор источников для записи может быть независимым, с возможностью любой их комбинации, или же с возможностью выбора для записи только одного источника.

Теперь о дополнительных устройствах звуковых карт. Чаще всего таким устройством является та или иная модель музыкального синтезатора; если цифровой тракт способен лишь просто воспроизвести звуковой поток, то синтезатор способен создавать звучания прямо внутри себя, и играть этими звуками под управлением компьютера. Наиболее распространенные синтезаторы - GF1 и Interwave (Gravis Ultrasound), EMU8000 (Sound Blaster AWE), ICS WaveFront (семейство карт Turtle Beach). Все они построены по таблично-волновому (Wave Table) принципу, когда в памяти синтезатора хранятся таблицы с образцами звучаний, записанными в цифровой форме, которые в нужные моменты проигрываются на определенной высоте и в нужных сочетаниях. В отличие от FM–синтеза, создающего звуки "из ничего", этот метод нельзя назвать "честным" синтезом, однако современные WT–синтезаторы способны до неузнаваемости менять высоту, амплитуду и спектр исходных звуков, создавая из них совершенно новые.

Для того, чтобы воспроизводить звуки, WT–синтезатор нуждается в памяти, куда они записываются. Обычно это ПЗУ, в котором записан базовый набор звуков - General MIDI (GM); в ряде карт имеется еще и ОЗУ, куда можно загружать дополнительные звуки и их наборы, расширяя тембровую палитру синтезатора. Некоторые карты не имеют ПЗУ, сразу загружая звуки во внутреннее ОЗУ (GUS, EWS64XL) или в системное ОЗУ компьютера (карты на S3 SonicVibes). Последняя технология носит названия UMA (Unified Memory Architecture).

Синтезаторы звуковых карт - как FM, так и WT - управляются из прикладных программ при помощи MIDI - цифрового интерфейса музыкальных инструментов, включающего команды исполнения нот, смены тембров, управления громкостью, высотой, панорамой и другими параметрами звука. Однако MIDI содержит только команды исполнителю - это очень похоже на нотную партитуру. Несмотря на то, что стандартные тембры разных синтезаторов похожи друг на друга, они все же имеют различные оттенки и динамику звучания, поэтому MIDI–музыка, отлично звучащая на одном типе синтезатора, может совершенно "неправильно" звучать на другом, и наоборот; об этом не следует забывать, оценивая звучание MIDI–файлов, сделанных на других картах и инструментах.

Многие звуковые карты снабжены разъемом для дополнительной дочерней платы (Daughterboard). Дочерняя плата фактически является внутренним MIDI–синтезатором, получая через MIDI–интерфейс основной карты команды, отыгрывая их и возвращая звук в аналоговом виде обратно на основную карту. Идея дочерней платы была впервые реализована в плате Creative Wave Blaster, поэтому и другие дочерние платы часто ошибочно называют Wave Blaster'ами - так же, как и обычные звуковые - Sound Blaster'ами. Установка дочерней платы позволяет получить на простой карте таблично-волновой синтез, а при его наличии - расширить возможности и палитру базового синтезатора.

Там, где есть дополнительный синтезатор и разъем для дочерней платы, в микшере могут быть либо предусмотрены отдельные каналы для этих двух источников, либо оба они сводятся с выходом OPL3, образуя единый звуковой источник "MIDI".


Разъемы звуковых плат

Файл:S_20070624190622.jpg

Большинство звуковых плат имеют одинаковые разъемы. Через эти миниатюрные (1/8 дюйма) разъемы сигналы подаются с платы на акустические системы, наушники и входы стереосистемы; к аналогичным разъемам подключается микрофон, проигрыватель компакт-дисков и магнитофон. На рис. показаны четыре типа разъемов, которые, как минимум, должны быть установлены на вашей звуковой плате. Цветовые обозначения разъемов каждого типа определены в руководстве PC99 Design Guide и могут варьироваться для различных звуковых адаптеров.

Линейный выход платы. Сигнал с этого разъема можно подать на внешние устройства — акустические системы, наушники или вход стереоусилителя, с помощью которого сигнал можно усилить до определенного уровня. В некоторых звуковых платах, например в Microsoft Windows Sound System, имеются два выходных гнезда: одно для сигнала левого канала, а другое — для правого.

Линейный вход платы. Этот входной разъем используется при микшировании или записи звукового сигнала, поступающего от внешней аудиосистемы на жесткий диск.

Разъем для акустической системы и наушников. Этот разъем присутствует не во всех платах и обеспечивает нормальный уровень громкости для наушников и небольших акустических систем. Выходная мощность большинства звуковых плат составляет примерно 4 Вт. В настоящее время, как правило, этот разъем используется для задних громкоговорителей в акустической системе с четырьмя источниками звука. Иногда разъем отключен по умолчанию; при подключении задних динамиков для активизации порта необходимо просмотреть параметры аудиоадаптера или конфигурационной утилиты.

Микрофонный вход, или вход монофонического сигнала. К этому разъему подключается микрофон для записи на диск голоса или других звуков. Запись с микрофона является монофонической. Для повышения качества сигнала во многих звуковых платах используется автоматическая регулировка усиления (Automatic Gain Control — AGC). Уровень входного сигнала при этом поддерживается постоянным и оптимальным для преобразования. Для записи лучше всего использовать электродинамический или конденсаторный микрофон, рассчитанный на сопротивление нагрузки от 600 Ом до 10 кОм. В некоторых дешевых звуковых платах микрофон подключается к линейному входу.

Разъем для джойстика/MIDI. Для подключения джойстика используется 15-контактный D-образный разъем. Два его контакта можно использовать для управления устройством MIDI, например клавишным синтезатором. (В этом случае необходимо приобрести Y-образный кабель.) Некоторые звуковые платы для устройств MIDI имеют отдельный разъем. В современных компьютерах порт для джойстика может иногда находиться на системной плате или на отдельной плате расширения. В этом случае при подключении игрового контроллера необходимо уточнить, какой именно используется в текущей конфигурации операционной системы. В некоторых новейших аудиоадаптерах и встроенных звуковых системах этот разъем отсутствует, поскольку новое поколение игровых манипуляторов подключается к разъему USB


Дополнительные разъемы

Большинство современных звуковых адаптеров поддерживают возможности воспроизведения DVD, обработки звука и т. д., а следовательно, имеют несколько дополнительных разъемов.

  • Вход и выход MIDI. Такой разъем, не совмещенный с игровым портом, позволяет одновременно использовать как джойстик, так и внешние устройства MIDI. Типичное расположение: внешнее устройство.
  • Вход и выход SPDIF (SP/DIF). Этот разъем (Sony/Philips Digital Interface) используется для передачи цифровых аудиосигналов между устройствами без их преобразования к аналоговому виду. Некоторые производители интерфейс SPDIF называют Dolby Digital. Типичное расположение — внешнее устройство.
  • CD SPDIF. Этот разъем предназначен для подключения накопителя CD-ROM к звуковой плате с помощью интерфейса SPDIF. Типичное расположение — задняя панель аудиоадаптера.
  • Вход TAD. Разъем для подключения модемов с поддержкой автоответчика (Telephone Answering Device) к звуковой плате. Типичное расположение — задняя панель аудиоадаптера.
  • Цифровой выход DIN. Этот разъем предназначен для подключения многоканальных цифровых акустических систем. Типичное расположение — внешнее устройство.
  • Вход Aux. Обеспечивает подключение к звуковой карте других источников сигнала, например телетюнера. Типичное расположение — задняя панель аудиоадаптера.
  • Вход I2S. Позволяет подключать к звуковой карте цифровой выход внешних источников, например DVD. Типичное расположение — задняя панель аудиоадаптера.
  • Порт USB. Позволяет подключать звуковую плату к акустической системе USB, игровым контроллерам и другим USB-устройствам. В первом аудиоадаптере со встроенными портами USB — Hercules Game Theater XP — поддерживается только интерфейс USB 1.1. Тем не менее следующие версии этой модели будут оснащены USB 2.0. Типичное расположение — внешнее устройство.
  • IEEE-1394. Посредством этого разъема к звуковой плате подключаются цифровые видеокамеры, сканеры, жесткие диски и другие устройства. В разъем SB 1394 аудиоадаптера Sound Blaster Audigy можно подключать как устройства ШЕЕ-1394, так и устройства, поддерживающие новый стандарт Creative Labs — SB 1394. Типичное расположение — дополнительная панель или внешнее устройство.


Файл:S_20070624190823.jpg


1. Аналоговый/цифровой выход

2. Линейный вход

3. Микрофонный вход

4. Передний линейный выход

5. Задний линейный выход

6. Порт SB1394 (по одному на плате и на внешнем модуле)

7. Вход/выход SPDIF

8. Оптический вход/выход

9. Выход для наушников

10. Регулятор громкости наушников

11. Левый/правый вход Aux

12. Линейный вход

13. Регулятор громкости для линейного входа

14. Вход/выход MIDI


Дополнительные разъемы обычно располагаются непосредственно на звуковой плате или подсоединяются к внешнему блоку или дочерней плате. Например, Sound Blaster Audigy Platinum, Platinum EX и Hercules Game Theater представляют собой устройство, состоящее из двух частей. Сам звуковой адаптер подключается в разъем PCI, а дополнительные соединители подсоединяются к внешнему интерфейсному модулю, который устанавливается в неиспользуемый отсек дисковода. У профессионального аудиоадаптера Platinum EX есть внешний интерфейсный модуль с разнообразными разъемами. Для обеих моделей предусмотрен пульт дистанционного управления.


Основные производители


--Гвоздев Сергей 10:32, 9 января 2010 (UTC) --Вадим Евстегнеев 01:15, 10 января 2010 (UTC)

Просмотры
Инструменты

Besucherzahler russian mail order brides
счетчик посещений
Rambler's Top100
Лингафонные кабинеты  Интерактивные доски  Интерактивная приставка Mimio Teach