Дисперсия

Материал из ПИЭ.Wiki

Перейти к: навигация, поиск

Содержание

Дисперсия

По оптическому волокну передается не просто световая энергия, но также полезный информационный сигнал. Импульсы света, последовательность которых определяет информационный поток, в процессе распространения расплываются. При достаточно большом уширении импульсы начинают перекрываться, так что становится невозможным их выделение при приеме.

Дисперсия - уширение импульсов - имеет размерность времени и определяется как квадратичная разность длительностей импульсов на выходе и входе кабеля длины L по формуле Файл:111.gif [10]. Обычно дисперсия нормируется в расчете на 1км, и измеряется в пс/км. Дисперсия в общем случае характеризуется тремя основными факторами, рассматриваемыми ниже:

  • различием скоростей распространения направляемых мод (межмодовой дисперсией tmod)
  • направляющими свойствами световодной структуры (волноводной дисперсией tw)
  • свойствами материала оптического волокна (материальной дисперсией tmat)

Чем меньше значение дисперсии, тем больший поток информации можно передать по волокну.


Межмодовая дисперсия и полоса пропускания

Межмодовая дисперсия возникает вследствие различной скорости распространения у мод, и имеет место только в многомодовом волокне. Для ступенчатого многомодового волокна и градиентного многомодового волокна с параболическим профилем показателя преломления ее можно вычислить соответственно по формулам:

где L - длина межмодовой связи (для ступенчатого волокна порядка 5 км, для градиентного - порядка 10 км).

Изменение закона дисперсии с линейного на квадратичный связано с неоднородностями, которые есть в реальном волокне. Эти неоднородности приводят к взаимодействию между модами, и перераспределению энергии внутри них. При L > Lc наступает установившийся режим, когда все моды в определенной установившейся пропорции присутствуют в излучении. Обычно длины линий связи между активными устройствами при использовании многомодового волокна не превосходят 2 км и значительно меньше длины межмодовой связи. Поэтому можно пользоваться линейным законом дисперсии.

Вследствие квадратичной зависимости от D значения межмодовой дисперсии у градиентного волокна значительно меньше, чем у ступенчатого, что делает более предпочтительным использование градиентного многомодового волокна в линиях связи.

На практике, особенно при описании многомодового волокна, чаще пользуются термином полоса пропускания. При расчете полосы пропускания W можно пользоваться формулой: W = 0,44 / t

Измеряется полоса пропускания в МГц*км. Из определения полосы пропускания видно, что дисперсия накладывает ограничения на дальность передачи и верхнюю частоту передаваемых сигналов. Физический смысл W - это максимальная частота модуляции передаваемого сигнала при длине линии 1 км. Если дисперсия линейно растет с ростом расстояния, то полоса пропускания обратно пропорционально зависит от расстояния.


Хроматическая дисперсия

Хроматическая дисперсия состоит из материальной и волноводной составляющих и имеет место при распространении как в одномодовом, так и в многомодовом волокне. Однако наиболее отчетливо она проявляется в одномодовом волокне, в виду отсутствия межмодовой дисперсии.

Материальная дисперсия обусловлена зависимостью показателя преломления волокна от длины волны. В выражение для дисперсии одномодового волокна входит дифференциальная зависимость показателя преломления от длины волны.

Волноводная дисперсия обусловлена зависимостью коэффициента распространения моды от длины волны.

где введены коэффициенты M(l) и N(l) - удельные материальная и волноводная дисперсии соответственно, а Dl (нм) - уширение длины волны вследствие некогерентности источника излучения. Результирующее значение коэффициента удельной хроматической дисперсии определяется как D(l) = M(l) + N(l). Удельная дисперсия имеет размерность пс/(нм*км). Если коэффициент волноводной дисперсии всегда больше нуля, то коэффициент материальной дисперсии может быть как положительным, так и отрицательным. И здесь важным является то, что при определенной длине волны (примерно 1310 ± 10 нм для ступенчатого одномодового волокна) происходит взаимная компенсация M(l) и N(l), а результирующая дисперсия D(l) обращается в нуль. Длина волны, при которой это происходит, называется длиной волны нулевой дисперсии l. Обычно указывается некоторый диапазон длин волн, в пределах которых может варьироваться l для данного конкретного волокна. Фирма Corning использует следующий метод определения удельной хроматической дисперсии. Измеряются задержки по времени при распространении коротких импульсов света в волокне длиной не меньше 1 км. После получения выборки данных для нескольких длин волн из диапазона интерполяции (800-1600 нм для MMF, 1200-1600 нм для SF и DSF), делается повторная выборка измерения задержек на тех же длинах волн, но только на коротком эталонном волокне (длина 2м). Времена задержек, полученных на нем, вычитаются из соответствующих времен, полученных на длинном волокне, чтобы устранить систематическую составляющую ошибки.

Хроматическая дисперсия вычисляется по формуле:

Кривые временных задержек и удельных хроматических дисперсий для:

а) многомодового градиентного волокна (62,5/125)

б) одномодового ступенчатого волокна (SF)

в) одномодового волокна со смещенной дисперсией (DSF)


Поляризационная модовая дисперсия

Поляризационная модовая дисперсия tpmd (polarization mode dispersion) возникает вследствие различной скорости распространения двух взаимно перпендикулярных поляризационных составляющих моды. Коэффициент удельной дисперсии T нормируется в расчете на 1 км и имеет размерность (пс/км1/2), а tpmd растет с расстоянием по закону tpmd=T·L1/2. Для учета вклада в результирующую дисперсию следует добавить слагаемое t2pmd в правую часть (2-13). Из-за небольшой величины tpmd может проявляться исключительно в одномодовом волокне, причем когда используется передача широкополосного сигнала (полоса пропускания 2,4 Гбит/c и выше) с очень узкой спектральной полосой излучения 0,1 нм и меньше. В этом случае хроматическая дисперсия становится сравнимой с поляризационной модовой дисперсией.

В одномодовом волокне в действительности может распространяться не одна мода, а две фундаментальные моды - две перпендикулярные поляризации исходного сигнала. В идеальном волокне, в котором отсутствуют неоднородности по геометрии, две моды распространялись бы с одной и той же скоростью, рис. а. Однако на практике волокна имеют не идеальную геометрию, что приводит к различной скорости распространения двух поляризационных составляющих мод, рис. б.

Избыточный уровень tpmd, проявляясь вместе с чирпированным модулированным сигналом от лазера, а также поляризационной зависимостью потерь, может приводить к временным колебаниям амплитуды аналогового видеосигнала. В результате ухудшается качество изображения, или появляются диагональные полосы на телевизионном экране. При передаче цифрового сигнала высокой полосы (>2,4 Гбит/с) из-за наличия tpmd может возрастать битовая скорость появления ошибок.

Главной причиной возникновения поляризационной модовой дисперсии является некруглость (овальность) профиля сердцевины одномодового волокна, возникающая в процессе изготовления или эксплуатации волокна. При изготовлении волокна только строгий контроль позволяет достичь низких значений этого параметра.


Учет дисперсии при расчете ВОСП

Для того, чтобы при передаче сигнала сохранялось его приемлемое качество - соотношение сигнал/шум было не ниже определенного значения - необходимо, чтобы полоса пропускания волокна на длине волны передачи превосходила частоту модуляции. Ниже приводятся примеры расчета допустимой длины сегмента с использованием табл.

Пример 2.1. Стандарт Ethernet для многомодового волокна.

Оптический интерфейс 10Base-FL предполагает манчестерское кодирование с частотой модуляции 20 МГц. При использовании светодиодов с D l = 35 нм (850 нм) удельная полоса пропускания для волокна 50/125 составляет 125 МГц*км и при длине оптического сегмента 4 км будет 31 МГц, что больше 20 МГц. То есть с точки зрения дисперсии протяженность в 4 км является допустимой при указанной характеристике оптического передатчика и при данном типе волокна. Однако по затуханию, которое на этой длине волны составляет 3 дБ/км, динамического диапазона у стандартных приемопередатчиков на это расстояние может не хватить. Стандартом Ethernet 10Base-FL установлено допустимое расстояние 2 км, с учетом менее строгих требований как к характеристикам кабельной системы (например, волокно 62,5/125, наличие нескольких сухих соединительных стыков), так и к оптическим приемопередатчикам - оптическим трансиверам Ethernet (например D l = 50 нм ).

Пример 2.2. Стандарт FDDI для многомодового волокна.

Оптический интерфейс FDDI PMD предполагает кодировку 4B5B с частотой модуляции 125 МГц. При использовании светодиодов с D l = 35 нм (1310 нм) удельная полоса пропускания для волокна 62,5/125 составляет 450 МГц*км, и при длине оптического сегмента 2 км будет 225 МГц, что больше 125 МГц, то есть с точки зрения дисперсии протяженность в 2 км является допустимой, что находится в полном соответствии со стандартом FDDI PMD на многомодовое волокно.

Слабая зависимость полосы пропускания многомодового волокна (например 62,5/125) от спектральной ширины источника излучения, работающего на длине волны 1310 нм, (450 МГц*км при D l = 35 нм, и 452 МГц*км при D l = 2 нм) объясняется незначительной долей хроматической дисперсии по сравнению с межмодовой в силу близости рабочей длины волны к длине волны нулевой дисперсии. Таким образом, технические требования к спектральной полосе оптических передатчиков для работы по многомодовому волокну на длине 1310 нм обычно слабые.

Пример 2.3. Стандарт Fast Ethernet для одномодового волокна.

Оптический интерфейс 100Base-FX аналогично FDDI предполагает кодировку 4B5B с частотой модуляции 125 МГц. При использовании лазеров с D l = 2 нм (1310 нм) удельная полоса пропускания для ступенчатого одномодового волокна 8/125 составляет более 120000 МГц*км и при длине оптического сегмента 100 км будет 1200 МГц, что больше 125 МГц. То есть с точки зрения дисперсии протяженность в 100 км является допустимой, однако здесь уже начинает сказываться затухание. При динамическом диапазоне 25 дБ с учетом потерь на сухих соединениях и сварках при затухании в волокне 0,4 дБ/км получаем максимальное расстояние 62,5 км.

Уменьшить потери можно, если передавать сигнал на длине волны 1550 нм. По потерям при прежнем динамическом диапазоне 25 дБ и при условии, что волокно имеет затухание 0,25 дБ/км, получаем расстояние 100 км. По дисперсии при использовании лазеров с D l = 2 нм (1310 нм) удельная полоса пропускания для ступенчатого одномодового волокна 8/125 составляет 12600 МГц*км. В итоге на дистанции 100 км полоса пропускания будет 126 МГц, что сравнимо с частотой модуляции Fast Ethernet. Это не очень надежно. При фиксированной спектральной полосе D l = 2 нм затруднения можно снять, если использовать для передачи волокно со смещенной дисперсией DSF. Если же кабельная система представлена исключительно одномодовыми волокнами со ступенчатым профилем (SF), то следует использовать оптические передатчики с более узкой спектральной полосой, например D l = 1 нм.

Пример 2.4. Стандарт ATM 622 Мбит/c (STM-4) для одномодового волокна.

Оптический интерфейс ATM 622 Мбит/c использует кодировку 8B10B, что соответствует частоте модуляции 778 МГц. При использовании лазера с D l = 0,1 нм (1550 нм) с удельная полоса пропускания для ступенчатого одномодового волокна 8/125 составляет 252000 МГц*км (12600 x 20). При длине оптического сегмента 100 км будет 2520 МГц, что значительно больше 778 МГц. То есть с точки зрения дисперсии, при использовании лазера с D l = 0,1 нм (1550 нм) протяженность в 100 км является допустимой даже если применяется стандартное ступенчатое волокно.

Пример 2.5. Передача супер-сигнала на частоте 100 ГГц по одномодовому волокну со смещенной дисперсией DSF.

При использовании лазеров с tchr = 0,1 нм (1550 нм) удельная полоса пропускания для DSF 8/125 составляет более 2400 ГГц*км (20 x 120000 МГц*км) и при длине оптического сегмента 20 км будет 120 ГГц, что незначительно превосходит 100 ГГц. То есть с точки зрения дисперсии, протяженность сегмента в 20 км находится на грани предельного допустимого расстояния. Именно поэтому оптические супер-сети со скоростью передачи на канал 100 Гбит/с имеют ограниченный масштаб, например масштаб города. Пример 2.6. Сравнение влияния хроматической и поляризационной модовой дисперсии

Оценить расстояние L0, при котором хроматическая tchr и поляризационная модовая дисперсии tpmd сравниваются по величине, если коэффициент хроматической дисперсии D=2 пс/(нм*км), коэффициент поляризационной модовой дисперсии Т= 0,5 пс/км1/2, а ширина спектрального излучения D l=0,05 нм.

Приравнивая выражения tchr=D·D l·L и tpmd=T·L1/2, находим L0 = (T/DDl)2 = 25 км. Если при L>L0 поляризационной модовой дисперсией можно пренебречь, то при L<L0наоборот ее следует строго учитывать. Проблема поляризационной модовой дисперсии возникает при обсуждении проектов построения супермагистралей (>100 Гбит/c) городского масштаба. Пример 2.7. Влияние PMD на высокоскоростные потоки

Оценить максимальное допустимое расстояние оптического сегмента Lmax, на которое можно передать одноканальный сигнал с частотой W=100 ГГц без ретрансляции, исходя из ограничений, вносимых поляризационной модовой дисперсией, если коэффициент поляризационной модовой дисперсии Т= 1 пс/км1/2.

На основании соотношения (2-17) получаем: tpmd=T·L1/2 < 0,44/W. Отсюда Lmax = (0,44/WT)2 = (0,44/(100·109·10-12))2 ~ 19 км. При Т= 0,5 пс/км1/2 расстояние возрастает до 77 км. Ведущие фирмы-производителя волокна обеспечивают выходной параметр поляризационной модовой дисперсии не выше 0,5. Однако, следует учитывать, что после инсталляции кабельной системы значение этого параметра возрастает.

Источник: [1]

Просмотры
Инструменты

Besucherzahler russian mail order brides
счетчик посещений
Rambler's Top100
Лингафонные кабинеты  Интерактивные доски  Интерактивная приставка Mimio Teach